
Multi-Agent Programming Contest

Protocol Description

and Further Informations

(2010 Edition)

http://www.multiagentcontest.org/2010/

Tristan Behrens Jürgen Dix Jomi Hübner
Michael Köster

January 21, 2010

1 Scenario: Cows and Herders

In this year’s Multi-Agent Programming Contest the participants have to com-
pete in an environment for cows. Each team controls a set of herders (up to
twenty agents) in order to direct the cows into their own corral. The team with
the most cows in the corral (in average) wins the match.

2 General Agent-2-Server Communication Prin-
ciples

The agents from each participating team will be executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents from
competing teams perform actions, runs on the remote contest simulation server.

Agents communicate with the contest server using standard TCP/IP stack
with socket session interface. The Internet coordinates (IP address and port) of
the contest server (and a dedicated test server) will be announced later via the
official contest mailing list.

Agents communicate with the server by exchanging XML messages. Mes-
sages are well-formed XML documents, described later in this document. We
recommend using standard XML parsers available for many programming lan-
guages for generation and processing of these XML messages.

1



3 Communication Protocol Overview

Logically, the tournament consists of a number of matches. A match is a sequel
of simulations during which two teams of agents compete in several different
settings of the environment. However, from agent’s point of view, the tourna-
ment consists of a number of simulations in different environment settings and
against different opponents.

The tournament is divided into three phases:

1. the initial phase,

2. the simulation phase, and

3. the final phase.

During the initial phase, agents connect to the simulation server and identify
themselves by username and password (AUTH-REQUEST message). Credentials for
each agent will be distributed in advance via e-mail. As a response, agents re-
ceive the result of their authentication request (AUTH-RESPONSE message) which
can either succeed, or fail. After successful authentication, agents should wait
until the first simulation of the tournament starts.

Here is a picture of the initial phase (UML-like notation):

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

At the beginning of each simulation, agents of the two participating teams
are notified (SIM-START message) and receive simulation specific information:

• simulation ID,

• opponent’s ID,

• grid size,

• corral position and size,

• line of sight, and

• number of steps the simulation will last.

2



In each simulation step each agent receives a perception about its environ-
ment (REQUEST-ACTION message) and should respond by performing an action
(ACTION message). Each REQUEST-ACTION message contains

• information about the cells in the visibility range of the agent (including
the one agent stands on),

• the agent’s absolute position in the grid,

• the current simulation step number,

• the current number of cows in the team’s corral, and

• the deadline for responding.

The agent has to deliver its response within the given deadline. The action
message has to contain the identifier of the action, the agent wants to perform,
and action parameters, if required.

Here is a picture of the simulation phase:

Server Agent

SIM-START

REQUEST-ACTION

ACTION

SIM-END

loop: Simulation Step Cycle

When the simulation is finished, participating agents receive a notification
about its end (SIM-END message) which includes

• the information about the average number of caught cows, and

• the information about the result of the simulation (whether the team has
won or lost the simulation or if the result was a draw).

All agents which currently do not participate in a simulation should wait
until the simulation server notifies them about either 1) the start of a simulation,
they are going to participate in, or 2) the end of the tournament.

3



At the end of the tournament, all agents receive a notification (BYE message).
Subsequently the simulation server will terminate the connections to the agents.

Here is a picture of the final phase:

Server Agent

BYE

3.1 Reconnection

When an agent loses connection to the simulation server, the tournament pro-
ceeds without disruption, only all the actions of the disconnected agent are con-
sidered to be empty (skip). Agents are themselves responsible for maintaining
the connection to the simulation server and in a case of connection disruption,
they are allowed to reconnect.

Agent reconnects by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the simulation
server, it sends AUTH-REQUEST message and receives AUTH-RESPONSE. After suc-
cessful authentication, server sends SIM-START message to an agent. If an agent
participates in a currently running simulation, the SIM-START message will be
delivered immediately after AUTH-RESPONSE. Otherwise an agent will wait un-
til a next simulation in which it participates starts. In the next subsequent
step when the agent is picked to perform an action, it receives the standard
REQUEST-ACTION message containing the perception of the agent at the current
simulation step and simulation proceeds in a normal mode.

Here is a picture:

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

4



3.2 XML Messages Description

3.2.1 XML message structure

XML messages exchanged between server and agents are zero terminated UTF-8
strings. Each XML message exchanged between the simulation server and agent
consists of three parts:

• Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"?>

• Message envelope: The root element of all XML messages is <message>.
It has attributes the timestamp and a message type identifier.

• Message separator: Note that because each message is a UTF-8 zero ter-
minated string, messages are separated by nullbyte.

The timestamp is a numeric string containing the status of the simulation
server’s global timer at the time of message creation. The unit of the global
timer is milliseconds and it is the result of standard system call ”time” on the
simulation server (measuring number of milliseconds from January 1st, 1970
UTC). Message type identifier is one of the following values: auth-request,
auth-response, sim-start, sim-end, bye, request-action, action.

Messages sent from the server to an agent contain all attributes of the root
element. However, the timestamp attribute can be omitted in messages sent
from an agent to the server. In the case it is included, server silently ignores it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

Optional simulation specific data According to the message type, the root
element <message> can contain simulation specific data.

5



3.2.2 AUTH-REQUEST (agent-2-server)

When the agent connects to the server, it has to authenticate itself using the
username and password provided by the contest organizers in advance. This
way we prevent the unauthorized use of connection belonging to a contest par-
ticipant. AUTH-REQUEST is the very first message an agent sends to the contest
server.

The message envelope contains one element <authentication> without
subelements. It has two attributes username and password.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">
<authentication username="xteam5" password="jabjar5"/>

</message>

3.2.3 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUEST message, the server verifies the provided creden-
tials and responds by a message AUTH-RESPONSE indicating success, or failure of
authentication. It has one attribute timestamp that represents the time when
the message was sent.

The envelope contains one <authentication> element without subelements.
It has one attribute result of type string and its value can be either "ok", or
"fail". Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979083919" type="auth-response">
<authentication result="ok"/>

</message>

3.2.4 SIM-START (server-2-agent)

At the beginning of each simulation the server picks two teams of agents to par-
ticipate in the simulation. The simulation starts by notifying the corresponding
agents about the details of the starting simulation. This notification is done by
sending the SIM-START message.

The data about the starting simulation are contained in one <simulation>
element with the following attributes:

• id - unique identifier of the simulation (string),

• opponent - unique identifier of the enemy team (string),

• steps - number of steps the simulation will perform (numeric),

• gsizex - horizontal size of the grid environment (west-east) (numeric),

• gsizey - vertical size of the environment (north-south) (numeric),

6



• corralx0 - left border of the corral (numeric),

• corralx1 - right border of the corral (numeric),

• corraly0 - upper border of the corral (numeric),

• corraly1 - lower border of the corral (numeric),

• lineOfSight - the size of the visibility square (numeric),

Remark: One step involves all agents acting at once. Therefore if a simula-
tion has n steps, it means that each agent will receive REQUEST-ACTION messages
exactly n times during the simulation (unless it loses the connection to the sim-
ulation server).

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979126544" type="sim-start">
<simulation
corralx0="0"
corralx1="14"
corraly0="55"
corraly1="69"
gsizex="70" gsizey="70"
id="stampede"
lineOfSight="8"
opponent="xteam"
steps="10"/>

</message>

3.2.5 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simulation
the server notifies agents about its end and its result.

The message envelope contains one element <sim-result> with two at-
tributes averageScore and result. averageScore attribute contains the aver-
age number of caught cows in the corral of the team the given agent belongs to,
and result is a string value equal to one of "win","lose","draw". The element
<sim-result> does not contain subelements.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760356" type="sim-end">
<sim-result result="draw" averageScore="9"/>

</message>

7



3.2.6 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last sim-
ulation has finished and subsequently terminates the connections. There is no
data within the message envelope of this message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760555" type="bye"/>

3.2.7 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and
sends them the corresponding perceptions.

The message envelope of the REQUEST-ACTION message contains the element
<perception> with six attributes:

• step - current simulation step (numeric),

• posx - column of current agent’s position (numeric),

• posy - row of current agent’s position (numeric),

• cowsInCorral - number of cows in the corral of the agent’s team at the
current simulation step (numeric),

• deadline - server global timer value until which the agent has to deliver
a reaction in form of an ACTION message (the same format as timestamp),

• id - unique identifier of the REQUEST-ACTION message (string).

The element <perception> contains a number of subelements <cell> with
two numeric attributes x and y that denote the cell’s relative position to the
agent.

If an agent stands near the grid border or corner, only the perceptions for
the existing cells are provided.

Each element <cell> contains a number of subelements indicating the con-
tent of the given cell. Each subelement is an empty element tag without further
subelements:

• <agent> - there is an agent in the cell. The string attribute type indicates
whether it is an agent of the enemy team, or ally. Allowed values for the
attribute type are "ally" and "enemy".

• <obstacle> - the cell contains an obstacle. This element has no associated
attributes.

• <cow> - the cell contains a cow. The string attribute ID represents the
cow’s unique identifier.

8



• <corral> - the cell is a corral cell. The string attribute type indicates
whether it belongs to the team’s or the opponent’s corral. Allowed values
for the attribute type are "ally" and "enemy".

• <switch> - the cell contains a switch.

• <fence> - the cell contains a segment of a fence. Allowed values for the
attribute open are "true" and "false".

• <empty> - the cell is empty.

• <unknown> - the content of a cell is not provided by the server because of
information distortion.

The specific rules on allowed combinations of objects in a cell are provided
in the scenario description.

Example (compare to Fig. 1):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1243942024822" type="request-action">
<perception deadline="1243942032822" id="1" posx="16" posy="20" cowsInCorral="0" step="0">
<cell x="-8" y="-8">
<empty/>
</cell>
<cell x="-8" y="-7">
<empty/>
</cell>
<cell x="-8" y="-6">
<empty/>
</cell>
<cell x="-8" y="-5">
<obstacle/>
</cell>
<cell x="-8" y="-4">
<obstacle/>
</cell>
<cell x="-8" y="-3">
<obstacle/>
</cell>
<cell x="-8" y="-2">
<obstacle/>
</cell>
<cell x="-8" y="-1">
<obstacle/>
</cell>
<cell x="-8" y="0">
<obstacle/>
</cell>

9



<cell x="-8" y="1">
<obstacle/>
</cell>
<cell x="-8" y="2">
<obstacle/>
</cell>
<cell x="-8" y="3">
<obstacle/>
</cell>
...
<cell x="-7" y="-4">
<corral type="ally"/>
</cell>
<cell x="-7" y="-3">
<corral type="ally"/>
</cell>
<cell x="-7" y="-2">
<corral type="ally"/>
</cell>
<cell x="-7" y="-1">
<corral type="ally"/>
</cell>
<cell x="-7" y="0">
<corral type="ally"/>
</cell>
<cell x="-7" y="1">
<corral type="ally"/>
</cell>
<cell x="-7" y="2">
<corral type="ally"/>
</cell>
...
<cell x="-1" y="-4">
<fence open="false"/>
</cell>
<cell x="-1" y="-3">
<fence open="false"/>
</cell>
<cell x="-1" y="-2">
<fence open="false"/>
</cell>
<cell x="-1" y="-1">
<fence open="false"/>
</cell>
<cell x="-1" y="0">
<fence open="false"/>

10



</cell>
<cell x="-1" y="1">
<fence open="false"/>
</cell>
<cell x="-1" y="2">
<switch/>
</cell>
...
<cell x="2" y="-3">
<cow ID="0"/>
</cell>
<cell x="2" y="-2">
<empty/>
</cell>
...
<cell x="5" y="-2">
<agent type="enemy"/>
</cell>
...
<cell x="8" y="8">
<empty/>
</cell>
</perception>
</message>

Note that the agent perceives an area that is a square with the size 17 with
the agent in the center (see Fig. 1). Thus each agent is able to see 289 cells.
We refrained from depicting all 289 cells in the above example and showed just
some of the relevant cells instead. The three dots indicate the missing <cell>
elements.

11



Figure 1: The view range of the agents. The agent in the center perceives all
depicted cells.

3.2.8 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it
chooses to perform.

The envelope of the ACTION message contains one element <action> with
the attributes type and id. The attribute type indicates an action the agent
wants to perform. It contains a string value which can be one of the following
strings:

• "skip" – (the agent does nothing),

• "north" – (the agent moves one cell to the top) ,

• "northeast" – (the agent moves one cell to the top and one cell to the
right ),

• "east" – (the agent moves one cell to the right),

• "southeast" – (the agent moves one cell to the right and one cell to the
bottom),

• "south" – (the agent moves one cell to the bottom),

• "southwest" – (the agent moves one cell to the bottom and one to the
left),

12



• "west" – (the agent moves one cell to the left),

• "northwest" – (the agent moves one cell to the left and one to the top).

The attribute id is a string which should contain the REQUEST-ACTION mes-
sage identifier. The agents must plainly copy the value of id attribute in
REQUEST-ACTION message to the id attribute of ACTION message, otherwise
the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the time
indicated by the value of attribute deadline of the REQUEST-ACTION message.
Agents should therefore send the ACTION message in advance before the indi-
cated deadline is reached so that the server will receive it in time.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">
<action id="70" type="skip"/>

</message>

4 Remarks and notes

4.1 Ill-formed messages

Not well-formed XML messages received by the server from agents are dis-
carded. This means, that if some obligatory information (element, or attribute)
of a given message is missing the server silently ignores it. In the case that
a message will contain additional not-required informations, only the first oc-
curence is processed by the server. We strongly recommend to comply with the
communicatison protocol described above.

Examples:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">
<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent32" password="11111WWw"/>
<some-element arbitrary="234TreE"/>

</message>
<message type="action">
<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent1" password="qwErTY"/>
<some-element arbitrary="234TreE"/>

</message>

The message above will be processed as an AUTH-REQUEST message with the
credentials team1agent1/qwErTY.

13



5 Further Informations

5.1 Changes in the Protocol

Compared to last year’s contest we only changed few things:

• PING and PONG are not available anymore.

• The score is evaluated differently. We have cowsInCorral (which is the old
score) and averageScore (that determines the result) now.

• The team size is increased.

5.2 Technical Support and Organisational Issues

We are running a mailing list for all the inquiries regarding the Multi-Agent
Programming Contest. Feel free to subscribe if you are interested in further
details on the contest. Subscription for participants is mandatory. The list’s
address:

agentcontest2010@in.tu-clausthal.de

To subscribe, please send an e-mail to
agentcontest2010-subscribe@in.tu-clausthal.de

The most recent information about the Multi-Agent Programming Contest can
be found on the official web site http://www.multiagentcontest.org/2010/.

14


