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1 Introduction

In the following, we provide a detailed description of the Multi-Agent Program-
ming Contest 2012 scenario. The overall goal of the game is to control zones of
a map (graph) by placing agents on appropriate positions.

2 Background Story

In the year 2033 mankind finally populates Mars. While in the beginning the
settlers received food and water from transport ships sent from earth shortly
afterwards – because of the outer space pirates – sending these ships became too
dangerous and expensive. Also, there were rumors going around that somebody
actually found water on Mars below the surface. Soon the settlers started to
develop autonomous intelligent agents, so-called All Terrain Planetary Vehicles
(ATPV), to search for water wells. The World Emperor – enervated by the
pirates – decided to strengthen the search for water wells by paying money for
certain achievements. Sadly, this resulted in sabotage among the different groups
of settlers.

Now, the task of your agents is to find the best water wells and occupy the
best zones of Mars. Sometimes they have to sabotage their rivals to achieve
their goal ( while the opponents will most probably do the same) or to defend
themselves. Of course the agents’ vehicle pool contains specific vehicles, some
of them have special sensors, some of them are faster and some of them have
sabotage devices on board. Last but not least, your team also contains special
experts, the repair agents, that are capable of fixing agents that are disabled. In
general, each agent has a special expert knowledge and is thus the only one being
able to perform a certain action. So your agents have to find ways to cooperate
and coordinate themselves.
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3 The Challenge

In this year’s Contest the participants have to compete in an environment that
is constituted by a graph where the vertices have an unique identifier and also
a number that determines the value of that vertex. The weights of the edges on
the other hand denotes the costs of traversing the edge.

A zone is a subgraph (with at least two nodes) whose vertices are colored
by the graph coloring algorithm introduced in Section 4. If the vertices of a
zone are colored with a certain team color it is said that this team occupies this
area. The value of a zone determined by the sum of its vertices’ values. Since
the agents do not know a priori the values of the vertices, only probed vertices
contribute with their full value to the zone-value, unprobed ones only contribute
one point.

The goal of the game is to maximize the score. The score is computed by
summing up the values of the zones and the current money (cf. Section 8) for
each simulation step:

score =

steps∑
s=1

(zoness + moneys)

Where steps is the number of simulation steps, and zoness and moneys are the
current sum of all zone values and the current amount of money respectively.

Figure 1 shows such a scenario. The numbers depicted in the vertices de-
scribe the values of the water wells while the distance of two water wells is
labeled with travel costs. The green team controls the green zone while the blue
team has the smaller blue zone. The value of the blue zone, assuming that all
vertices have been probed by the blue team, is 25.

4 Graph Coloring Algorithm

The graph coloring algorithm is used to determine the zones that a team is
occupying. We firstly present the formal definition and afterwards explain it
via an example.

Definition 4.1. Let V be the set of vertices, E the set of edges, ag the set of
agents, and T the set of team names. Furthermore let ag(v) denote the set of
agents standing on vertex v ∈ V . A graph coloring is a mapping

c : V → T ∪ {none}.

The coloring is subject to change over time. We say that a vertex v is colored if
c(v) 6= none. The coloring is determined by the following calculation, consisting
of phases that are executed sequentially:

1. The first phase of the calculation only involves the coloring of vertices that
have agents standing on them. c(v) = t iff ag(v) 6= ∅ and t is the name of
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Figure 1: A screenshot.

the team that dominates the vertex. We say that a vertex v is dominated
by t if t has the majority of agents on v. If no team dominates the vertex,
then c(v) = none.

2. The coloring is extended to empty vertices that are direct neighbors of
dominated vertices. Formally, c(v) = t if ag(v) = ∅, t is the name of the
team that dominates the largest subset of neighbors

St = {vn | (v, vn) ∈ E, c(vn) = t, c(vn) 6= none, ag(vn) 6= ∅}

of v, with | St |> 1. Note that a team needs to dominate at least two
neighboring vertices of an empty vertex to be able to color that empty
vertex.

3. Some of the vertices that where colored with a team name t in the previous
two steps might represent a frontier that isolates a part of the graph from
all the other teams’ agents. We say that an empty vertex v has been
isolated by a team t (and thus c(v) := t) iff for all agents ag belonging
to a team t′, where t′ 6= t, there is no path from agn to v that does not
include a vertex v′ such c(v′) = t.
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4. c(v) := none iff the other conditions are not satisfied.

For the coloring algorithm, we are only consider agents that are not disabled.
The definition of disabled agents is given later in Section 7.

An example of graph coloring in an hypothetical world configuration is de-
picted in Figure 2. Pictures (a), (b) and (c) show the result of executing the
coloring calculation phases 1, 2 and 3 respectively. For the sake of improving
visibility, all edges whose two vertices are colored in the same team’s color, are
also shown in that same color, but internally this has neither meanings nor
implications.

In detail, phase 1 colors such vertices in a certain color regarding the color
of the majority of agents. For instance, in Figure (a) the top right vertex is
colored in green because there are three green agents but only one red agent
standing on that vertex. When there is a draw the vertex does not belong to a
team.

In phase 2 (Figure (b)) we look at the direct neighbors of the already colored
vertices. We color such a neighbor in a certain team color when there is an edge
from this uncolored vertex to at least two other vertices that are colored in that
particular team color. We are taking again the majority into account, i.e., the
color of the vertex is finally determined by counting for each team color the
connected vertices and choosing the best result. If there is a draw the vertex is
not colored at all.

Phase 3, finally, colors all vertices that are not reachable by other teams
without crossing the already colored vertices. One can see it as a border that
is separating parts of the graph. After executing phase 3 we have defined the
zones of all teams.

Picture (b) clearly shows how the green team has built a closed frontier
around a set of empty vertices, which are then colored in picture (c). In pic-
ture (d), an agent of the red team has “broken” the frontier, making some of
the vertices inside of it not isolated anymore.

5 Teams & All Terrain Planetary Vehicles

We define five roles (see Table 1), where each role describes the available actions
(actions an agent can perform) for the All Terrain Planetary Vehicle (ATPV),
its maximum energy, its maximum health, its strength and its visibility range.
While the energy is important for executing actions, the health determines
whether an agent is still able to perform all actions or just a small subset. The
strength defines how strong a sabotage will be and the visibility range describes
how far an agent can see. The concrete actions are described in Section 6. The
teams consist of 201 agents and for each group of four agents we assign the
following roles:

1This is new in this version.
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(a) Coloring phase 1 (b) Coloring phase 2

(c) Coloring phase 3 (d) Breaking a frontier.

Figure 2: Coloring phases

6 Agent Actions

An agent can perform some of the following actions regarding its role. The result
of that action is perceived by the agent automatically, i.e., the information is
sent to it in the next percept.

skip This action is always successful, costs no resources and the effect is that
the agent does not do anything.

recharge This action increases the current energy of the agent by 20 percent.
The result can be successful, or failed if attacked by an opponent. Of
course, it does not cost any resources.
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Explorer Actions: skip, goto, probe, survey, buy, recharge
Energy: 12
Health: 4
Strength: 0
Visibility range: 2

Repairer Actions: skip, goto, parry, survey, buy, repair, recharge
Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Saboteur Actions: skip, goto, parry, survey, buy, attack, recharge
Energy: 7
Health: 3
Strength: 4
Visibility range: 1

Sentinel Actions: skip, goto, parry, survey, buy, recharge
Energy: 10
Health: 1
Strength: 0
Visibility range: 3

Inspector Actions: skip, goto, inspect, survey, buy, recharge
Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Table 1: The different roles.

attack If an agent wants to sabotage some other agent it has to perform this
action. The action requires a parameter (the identifier of the target)
and can be successful, or failed because of lack of energy. Also, it
can be parried. Lastly, it can fail because of a wrong parameter, i.e.,
wrongParameter is the result. Also, the current energy is decreased about
2 points.

parry This action parries an attack and costs 2 points of energy points. If
actually an attack is taking place it is successful, otherwise it is useless.
The action can also fail because of too low energy, i.e., the result is failed.

goto The agent moves from one vertex to another by executing this action.
The reduction of the current energy is determined by the traveling costs,
i.e., the weight of an edge. The action needs a parameter, namely the id
of the vertex it wants to go to. The result of that action is, failed when
the current energy is too low and the current energy is decreased by 1,
wrongParameter if the parameter is incorrect or successful otherwise.

probe Without the team knowing the exact value of the node, it is set to 1
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when it comes to the computation of the zone score. Only if at least one
agent of the team analyzes the water well the team gets the full value
of that vertex (the value is then incorporated in the next percept). The
action costs 1 points of energy. A probe action can fail (result: failed)
for different reasons: lack of energy or being attacked by another agent.
Otherwise it is successful.

survey With this action (costs: 1) the agent can get the weights of the edges
(in the next percept). If the action is not successful it failed because
of too low energy or the agent was attacked in that moment.

inspect This action (costs: 2) inspects all opponents (the internals) on the
vertex the agent is standing at the moment as well as all direct neighbors.
The result can be again failed because of lack of energy or being attacked,
and is successful otherwise even if there is no agent at all.

buy The buy action (costs: 2) is more complex. It’s purpose is to increase your
agent’s maximum health, maximum energy, visibility range or maximum
strength buy spending money (cf. Section 8) on extension packs. The pos-
sible values for the parameter are: battery (increases maximum energy
and current energy by 1), sensor (increases visibility range by 1), shield
(increases maximum health and current health 1) or sabotageDevice (in-
creases the strength by 1). Of course, it fails if your agent is not allowed
(determined by the role) to wear a sabotageDevice. Also, it fails when
being attacked or if the current energy is too low. Finally, if the parame-
ter is syntactically wrong the result is wrongParameter and otherwise it
is successful.

repair This action (costs: 2) repairs a teammate. Note that an agent cannot
repair itself. The parameter determines which agent gets repaired. If the
value is syntactically wrong the result is wrongParameter. If there is no
such agent it is failed. It also fails because of too low energy. Otherwise
it is successful.

In general, an action can fail with a certain probability (1 percent). In this case
the action is considered as the skip action (and the percieved result will be
failed). Actions that are performed by an agent but do not correspond to the
agent’s role fail as well.

7 Disabled Agents

Agents whose health drops to zero, are disabled, i.e., only the action goto,
repair, skip are executable (if the role allows that). The recharge action is
also allowed to be performed, but its recharge rate is set to 10 percent.
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8 Money

If a team reaches a milestone, its money is increased. We have different achieve-
ments, for example:

• having zones with fixed values, e.g. 10 or 20,

• fixed numbers of probed vertices, e.g. 5 or 10,

• fixed numbers of surveyed edges, e.g. 10 or 20,

• fixed numbers of inspected vehicles, e.g. 5 or 10,

• fixed numbers of successful attacks, e.g. 5 or 10, or

• fixed numbers of successful parries, e.g. 5 or 10.

Note that the exact achievements are defined in the configuration. The exact
details about achievements are still object to change, in the upcoming phase of
balancing. We are going to announce them later.

9 Percepts

In every step, the agents get these percepts:

• state of the simulation, i.e. the current step,

• state of the team, i.e. the current scores and money,

• state of the vehicle, i.e. its internals as described above,

• visible vertices, i.e. identifier and team,

• visible edges, i.e. its vertices’ identifiers,

• visible vehicles, i.e. its identifier, vertex, team,

• probed vertices, i.e. its identifier and its value,

• surveyed edges, i.e. its vertices’ identifiers and weight, and

• inspected vehicles, i.e. its identifier, vertex, team and internals.

Please refer to the protocol description for the details about percepts.
We also have the notion of shared percepts. Agents of the same team that

are in the same zone share their percepts, that is visible vertices, edges and
vehicles, and probed vertices, surveyed edges and inspected vehicles.
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10 Simulation state transition

The simulation state transition is as follows:

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.
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