
Multi-Agent Programming Contest

Scenario Description

(2013 Edition)

http://www.multiagentcontest.org/2013/

Jürgen Dix Michael Köster Federico Schlesinger

June 27, 2013

New in 2013: Differences between the last year and 2013 are now marked
with boxes.

Contents

1 Introduction 3

2 Background Story 3

3 The Challenge 3

4 Visualization 5
4.1 Mode 2011 . 6
4.2 Mode 2012 . 7
4.3 Mode 2013 . 9

5 Graph Coloring Algorithm 11

6 Teams & All Terrain Planetary Vehicles 14

7 Agent Actions 15
7.1 Ranged Actions . 18
7.2 Actions’ Failure Codes . 19

8 Disabled Agents 22

9 Money 22

10 Percepts 22

1

http://www.multiagentcontest.org/2013/

11 Simulation State Transition 23

12 Statistics 23

2

1 Introduction

In the following, we provide a detailed description of the Multi-Agent Program-
ming Contest 2013 scenario. The overall goal of the game is to control zones of
a map (graph) by placing agents on appropriate positions.

2 Background Story

In the year 2033 mankind finally populates Mars. While in the beginning the
settlers received food and water from transport ships sent from earth shortly
afterwards – because of the outer space pirates – sending these ships became too
dangerous and expensive. Also, there were rumors going around that somebody
actually found water on Mars below the surface. Soon the settlers started to
develop autonomous intelligent agents, so-called All Terrain Planetary Vehicles
(ATPV), to search for water wells. The World Emperor – enervated by the
pirates – decided to strengthen the search for water wells by paying money for
certain achievements. Sadly, this resulted in sabotage among the different groups
of settlers.

Now, the task of your agents is to find the best water wells and occupy the
best zones of Mars. Sometimes they have to sabotage their rivals to achieve
their goal (while the opponents will most probably do the same) or to defend
themselves. Of course the agents’ vehicle pool contains specific vehicles, some
of them have special sensors, some of them are faster and some of them have
sabotage devices on board. Last but not least, your team also contains special
experts, the repair agents, that are capable of fixing agents that are disabled. In
general, each agent has a special expert knowledge and is thus the only one being
able to perform a certain action. So your agents have to find ways to cooperate
and coordinate themselves.

3 The Challenge

In this year’s Contest the participants have to compete in an environment that
is constituted by a graph where the vertices1 have an unique identifier and also
a number that determines the value of that vertex. The weights of the edges on
the other hand denotes the costs of traversing the edge.

A zone is a subgraph (with at least two nodes) whose vertices are colored
by the graph coloring algorithm introduced in Section 5. If the vertices of a
zone are colored with a certain team color it is said that this team occupies this
area. The value of a zone determined by the sum of its vertices’ values. Since
the agents do not know a priori the values of the vertices, only probed vertices
contribute with their full value to the zone-value, unprobed ones only contribute
one point.

1The words vertex and node are used interchangeably in this text, except when referring
to pieces of XML code (in true type typography).

3

The goal of the game is to maximize the score. The score is computed by
summing up the values of the zones and the current money (cf. Section 9) for
each simulation step:

score =

steps∑
s=1

(zoness + moneys)

Where steps is the number of simulation steps, and zoness and moneys are the
current sum of all zone values and the current amount of money respectively.

Figure 1: A screenshot.

Figure 1 shows such a scenario. The numbers depicted in the vertices de-
scribe the values of the water wells while the distance of two water wells is
labeled with travel costs. The green team controls the green zone while the blue
team has the smaller blue zone. The value of the blue zone, assuming that all
vertices have been probed by the blue team, is 25.

4

4 Visualization

New in 2013: We improved the simulation visualization for the monitor.
You can now choose between some modes.

We have three different modes for the visualization, named after the year we
introduced them. All of them might be useful for debugging so we will describe
them in the following sections. Please note that you can watch a match while
it is running as well as open a previously recorded match as well.

Running Simulation

$./startMarsViewer.sh localhost

Recorded Simulation

$./startMarsFileViewer.sh Mars2013_AB_2013-tournament-sim1

You can get details about an agent or a node by clicking on it. Additionally,
you can select an agent by using the combo box. If you press pause in a running
example the match on the server is still going on, however it gives you more
time to look at a particular step.

The visualization for the SVGs is at the moment similar to Mode 2012,
interactive features are not available. Of course we will migrate to the Mode
2013 soon.

5

4.1 Mode 2011

Figure 2: A screenshot of the mode 2011.

This is the first visualization that was used in 2011 (cf. Fig. 2). The number
in the nodes describe the value of the node while number on edges denote the
traveling costs. The roles of agents are depicted inside the agent symbol. Finally,
blue and green lines describe the team zones. For the role names the following
abbreviations are used:

RE Repairer

SE Sentinel

IN Inspector

SA Saboteur

EX Explorer

Lastly, disabled agents are filled with a Grey tone.

6

4.2 Mode 2012

This is the visualization for 2012 (see Fig. 3).

Figure 3: A screenshot of the mode 2012.

The thickness of the grey lines denotes the weights of the respective edges. A
thin line represents a small weight and a thick line a big value. The sizes of the
grey circles denote the nodes’ values. A small circle stands for a low value, a big
circle on the other hand represents a high value. Both teams color individual
nodes, edges between nodes and zones with their respective color.

On top of that the last action is rendered. The agents are decorated with
the following color/shape scheme:

green circle - the agent performed a successful sense action (probe, survey,
inspect),

red circle - the last action failed,

yellow star - the last action was a successful attack,

indigo star - the last action was a successful parry,

7

pink star - the agent executed a repair successfully, and

crossed out - the agent is currently disabled

Additionally, disabled agents are crossed out.
Please note that this color scheme is only representing the results of the last

action not the action currently performed.

Figure 4: A screenshot of the mode 2012.

We also added a new feature to this mode, namely the half circles inside the
vertices that describe whether a node was probed by a particular team. Fig 4
shows a setting were some nodes where probed by the blue team while the green
team did not probe any vertex so far.

8

4.3 Mode 2013

This is the newest iteration of our visualization (Fig. 5). As before the thickness
of edges describe the traveling costs while the size of the vertices denote the value
of a node. Probed nodes are filled with the color of the corresponding team. A
red cross means that an agent is disabled. The shape of an agent describes its
role:

Triangle Inspector

Diamond Saboteur

Circle Explorer

Octagon Repairer

Square Sentinel

Inside of the agent is its identifier. Above an agent is its last action depicted. If
it was successful it is green, if it was failing in range it is yellow, otherwise red.
The symbol describes the action that was executed:

+1 describes a buy action. The item that was bought is
depicted afterwards. A heart means health, a flash
corresponds to energy, glasses to visibility and a
sword to strength.

Cross This shows the goto action.

Drill The probe action.

Glasses The survey action.

Flash The recharge action.

Shield The parry action.

Wrench The repair action.

Sword The attack action.

Magnifying Glass The inspect action.

Nothing The skip action.

A line from one agent to another agent is drawn with the following color:

Orange if it was an attack action.

Magenta if it was an inspect action.

Cyan if it was an probe action.

Pink if it was an repair action.

9

Figure 5: Screenshots of the mode 2013.

10

5 Graph Coloring Algorithm

The graph coloring algorithm is used to determine the zones that a team is
occupying. We firstly present the formal definition and afterwards explain it
via an example.

Definition 5.1. Let V be the set of vertices, E the set of edges, ag the set of
agents, and T the set of team names. Furthermore let ag(v) denote the set of
agents standing on vertex v ∈ V . A graph coloring is a mapping

c : V → T ∪ {none}.

The coloring is subject to change over time. We say that a vertex v is colored if
c(v) 6= none. The coloring is determined by the following calculation, consisting
of phases that are executed sequentially:

1. The first phase of the calculation only involves the coloring of vertices that
have agents standing on them. c(v) = t iff ag(v) 6= ∅ and t is the name of
the team that dominates the vertex. We say that a vertex v is dominated
by t if t has the majority of agents on v. If no team dominates the vertex,
then c(v) = none.

2. The coloring is extended to empty vertices that are direct neighbors of
dominated vertices. Formally, c(v) = t if ag(v) = ∅, t is the name of the
team that dominates the largest subset of neighbors

St = {vn | (v, vn) ∈ E, c(vn) = t, c(vn) 6= none, ag(vn) 6= ∅}

of v, with | St |> 1. Note that a team needs to dominate at least two
neighboring vertices of an empty vertex to be able to color that empty
vertex.

3. Some of the vertices that where colored with a team name t in the previous
two steps might represent a frontier that isolates a part of the graph from
all the other teams’ agents. We say that an empty vertex v has been
isolated by a team t (and thus c(v) := t) iff for all agents ag belonging
to a team t′, where t′ 6= t, there is no path from agn to v that does not
include a vertex v′ such c(v′) = t.

4. c(v) := none iff the other conditions are not satisfied.

For the coloring algorithm, we are only consider agents that are not disabled.
The definition of disabled agents is given later in Section 8.

An example of graph coloring in an hypothetical world configuration is de-
picted in Figure 6. Pictures (a), (b) and (c) show the result of executing the
coloring calculation phases 1, 2 and 3 respectively. For the sake of improving
visibility, all edges whose two vertices are colored in the same team’s color, are
also shown in that same color, but internally this has neither meanings nor
implications.

11

In detail, phase 1 colors such vertices in a certain color regarding the color
of the majority of agents. For instance, in Figure (a) the top right vertex is
colored in green because there are three green agents but only one red agent
standing on that vertex. When there is a draw the vertex does not belong to a
team.

In phase 2 (Figure (b)) we look at the direct neighbors of the already colored
vertices. We color such a neighbor in a certain team color when there is an edge
from this uncolored vertex to at least two other vertices that are colored in that
particular team color. We are taking again the majority into account, i.e., the
color of the vertex is finally determined by counting for each team color the
connected vertices and choosing the best result. If there is a draw the vertex is
not colored at all.

Phase 3, finally, colors all vertices that are not reachable by other teams
without crossing the already colored vertices. One can see it as a border that
is separating parts of the graph. After executing phase 3 we have defined the
zones of all teams.

Picture (b) clearly shows how the green team has built a closed frontier
around a set of empty vertices, which are then colored in picture (c). In pic-
ture (d), an agent of the red team has “broken” the frontier, making some of
the vertices inside of it not isolated anymore.

12

(a) Coloring phase 1 (b) Coloring phase 2

(c) Coloring phase 3 (d) Breaking a frontier.

Figure 6: Coloring phases

13

6 Teams & All Terrain Planetary Vehicles

We define five roles (see Table 1), where each role describes the available actions
(actions an agent can perform) for the All Terrain Planetary Vehicle (ATPV),
its maximum energy, its maximum health, its strength and its visibility range.
While the energy is important for executing actions, the health determines
whether an agent is still able to perform all actions or just a small subset. The
strength defines how strong a sabotage will be and the visibility range describes
how far an agent can see. The concrete actions are described in Section 7. The
teams consist of 28 agents (6 Explorers, 6 Repairers, 6 Sentinels, 6 Inspectors

New in 2013:

The number

of agents was

increased.

and only 4 Saboteurs).

New in 2013: The concrete parameters will be adjusted further and there-
fore may change in future releases.

Explorer Actions: skip, goto, probe, survey, buy, recharge
Energy: 12
Health: 4
Strength: 0
Visibility range: 2

Repairer Actions: skip, goto, parry, survey, buy, repair, recharge
Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Saboteur Actions: skip, goto, parry, survey, buy, attack, recharge
Energy: 7
Health: 3
Strength: 4
Visibility range: 1

Sentinel Actions: skip, goto, parry, survey, buy, recharge
Energy: 10
Health: 1
Strength: 0
Visibility range: 3

Inspector Actions: skip, goto, inspect, survey, buy, recharge
Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Table 1: The different roles.

14

7 Agent Actions

New in 2013: All actions were changed.

In this section we present all the actions that are available for the agents.
Availability of an action for a particular agent depends on that agent’s role, as
stated in previous section. Table 2 presents a condensed version of the general
characteristics. Following, we present an explanation of every action.

skip The agent does not do anything. Note, most often performing a recharge
action is more useful than executing the skip action.

recharge This action increases the current energy of the agent by 50 percent
of the total.

goto The agent moves from one vertex to another by executing this action.
The reduction of the current energy is determined by the traveling costs,
i.e., the weight of an edge. The action needs a parameter, namely the id
of the vertex it wants to go to.

probe Without the team knowing the exact value of the node, it is set to 1
when it comes to the computation of the zone score. Only after one agent
of the team analyzes the water well the team gets the full value of that
vertex (the value is then incorporated in the next percepts). This is a
ranged action, meaning that the target node does not need to be on the
same node (more details in Section 7.1).

survey With this action the agent can get the weights of the edges (in the next
percept). All edges are perceived up to a certain distance from the agent,
which is determined randomly based on the the visibility range.

inspect This action is used to inspect the internal attributes of an opponent
agent, given as a parameter. This is a ranged action, meaning that
the opponent does not need to be on the same node (more details in
Section 7.1). If no parameter is given, all opponent agents standing on
the same node are inspected.

attack If an agent wants to sabotage some other agent it has to perform this
action. The action requires a parameter (the identifier of the target). This
is a ranged action, meaning that the opponent does not need to be on
the same node (more details in Section 7.1).

parry This action parries an attack, conserving the health of the agent for the
step in spite of opponent actions.

repair This action repairs a teammate. Note that an agent cannot repair
itself. The parameter determines which agent gets repaired. This is a
ranged action, meaning that the opponent does not need to be on the
same node (more details in Section 7.1).

15

buy The buy action is more complex. It’s purpose is to increase your agent’s
maximum health, maximum energy, visibility range or maximum strength
by spending money (cf. Section 9) on extension packs. The possible values
for the parameter are: battery (increases maximum energy and current
energy by 1), sensor (increases visibility range by 1), shield (increases
maximum health and current health 1) or sabotageDevice (increases the
strength by 1).

The result of an action is perceived explicitly by the agent, i.e., the infor-
mation is sent to it in the next percept. Last action result is successful when
the action is effectively executed; for more information on failure of actions see
section 9.

16

skip Parameter: -
Status: Any
Cost: -
Failure: -

recharge Parameter: -
Status: Any
Cost: -
Failure: -

goto Parameter: Vertex (required)
Status: Any
Cost: energy pts. equal to traversed edge value
Failure: resources, attacked, ureachable, wrong param

probe Parameter: Vertex (optional)
Status: enabled

Cost: 1 energy pt.
Failure: resources, attacked, out of range, in range,

wrong param, role, status
survey Parameter: -

Status: enabled

Cost: 1 energy pt.
Failure: resources, attacked, status

inspect Parameter: Agent (opponent - optional)
Status: enabled

Cost: 2 energy pts.
Failure: resources, attacked, out of range, in range,

wrong param, role, status
attack Parameter: Agent (opponent - required)

Status: enabled

Cost: 2 energy pts.
Failure: resources, parried, out of range, in range,

wrong param, role, status
parry Parameter: -

Status: enabled

Cost: 2 energy pts.
Failure: resources, role, status

repair Parameter: Agent (teammate - required)
Status: any
Cost: 2 energy pts. if enabled, 3 energy pts. if disabled
Failure: resources, out of range, in range, wrong param, role

buy Parameter: Attribute (battery, sensor, shield or sabotageDevice)
Status: enabled

Cost: 2 energy pts. & 2 achievement pts.
Failure: resources, wrong param, status, limit,

Table 2: The different actions.

17

7.1 Ranged Actions

New in 2013: Introduction of ranged actions.

Certain actions of the agents can act at a distance, i.e., having a target node
that is different than the one where the agent stands (probe), or having a target
agent that stands on a different node (inspect, attack and repair), as long
as the target is within the visibility range. Of course, this comes at some cost:
the energy required to execute the action increases with the distance; a factor
of randomness is introduced and the probability of success is decreased the
further away the action is attempted; and some actions (attack and repair)
also decrease their effects.

We define the distance to the target consistently with the definition of vis-
ibility range, as the minimum amount of edges that needs to be traversed to
reach it (edge’s values are ignored). The distance is added to the cost of the
action when the action is executed successfully. The distance is also added, if
the action fails. Only if the target does not exist (wrong param), the base costs
are taken. If the target exists and is outside the visibility range, the visibility
range is added instead of the distance.

The visibility range not only affects how far away a ranged action can be
executed, but also its probability of reaching the target at a certain distance,
and how effective it can be at that distance. The effectiveness is decreased
as a quadratic function, with the maxim possible effect (that is, the attacker’s
strength in case of attack and the target’s maxHealth in case of repairs) at
distance 0, and an effect value of 1 at distance equivalent to the visibility range.
The function that we use for this calculation is defined as follows:

Effect =
MaxValue− 1

VisRange2
· (VisRange−Distance)2 + 1

Figure 7 exemplifies this formula in function of the distance, for an attack
with strength 10 and three different visibility ranges: 1, 3 and 5. Note that
values are rounded to integers, and that values beyond the visibility range are
irrelevant (marked as 1 in the graph). In this example, a target successfully at-
tacked at distance 1, would find its current health decreased by 1 if the attacker’s
visibility range is 1, by 5 if it is 3, and by 7 when it is 5.

For determining the probability of missing the target, we calculate an effec-
tive range randomly every time a ranged action is attempted, and let the action
execute only if the distance to the target is within this range. Again, we use a
quadratic function, which is defined as follows:

EffectiveRange = VisRange · rand2

Were rand is a random value evenly distributed between 0 and 1. Figure 8
shows the function with visibility ranges of 3 and 5. Note that, since values are
rounded to integers, with a Visibility range of 3 there is a 0,59 probability of the
effective range being ≥ 1, and of 0,09 of it being ≥ 3; whereas with a Visibility
range of 5, the probability is 0,68 of it being ≥ 1, is 0,29 of it being ≥ 3, and is

18

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5

E
ff

ec
t

(S
tr

en
gt

h
)

Distance

Visibility Range 1
Visibility Range 3
Visibility Range 5

Figure 7: Effect of an Attack at a Distance

0,05 of it being ≥ 5. These are equivalent to say, the probabilities of an action
targeted at those distances reaching its target. Note that, since the function is
always ≥ 0, the actions targeted at the same node always pass this filter.

The random effective range is also used when executing the action survey,
although in a slightly different manner: only the weights of all the edges within
the effective range are perceived. Additionally, the formula is slightly changed
to:

EffectiveRange = (VisRange - 1) · rand2 + 1

That means the survey action returns at least the edges of the node the
agent is standing in.

7.2 Actions’ Failure Codes

Actions can fail due to diverse reasons. The possible causes of failure for each
action are presented in Table 2. The perceived last action result will be the
prefix failed followed by the failure reason. Here we explain what each possible
failure means:

failed resources The agent does not have enough resources to execute the
action. In most cases, resources mean energy points, although for the buy

action it can also mean money (i.e., achievement points).

failed attacked The attempted action was interrupted because the agent was
successfully attacked. Not that only some actions can be prevented by an
attack (see Table 2).

19

0

1

2

3

4

5

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

E
ff

ec
ti

ve
R

an
g
e

Uniformly Distributed Random Value

Visibility Range 3
Visibility Range 5

Figure 8: Effective Range Calculation

failed parried The attempted attack was parried by the target.

failed unreachable The agent attempted to move (goto) to a node that is
not connected to its current one.

failed out of range The target of the attempted ranged action was outside
the visibility range of the agent.

failed in range The ranged action was missed because of the distance, even
though the target of the attempted ranged action was within the visibility
range of the agent (a random factor was involved - see Section 7.1).

failed wrong param The parameter given was not recognized as a valid iden-
tifier.

failed role Agent belongs to a role that is not capable of executing the at-
tempted action.

failed status The agent is currently disabled, and the action can only be
executed when enabled (see Section 8).

failed limit The agent attempted to buy an extension pack to improve an
attribute for which it has already reached the maximum value allowed.

failed This code is used when the agent did not send an action on time, or
when the action sent was not recognized by the server.

20

Besides each action’s intrinsic failure possibilities, any action can fail ran-
domly with a 1 percent probability. In this case the action is considered as the
skip action (and the perceived result will be failed random).

21

8 Disabled Agents

Agents whose health drops to zero, are disabled, i.e., only the action goto,
repair, skip are executable (if the role allows that). The recharge action is
also allowed to be performed, but its recharge rate is set to 30 percent.

9 Money

If a team reaches a milestone, its money is increased by 2 units. We have
different achievements:
New in 2013: Specific achievements listed.

• Conquered a zone valued more than: 10, 20, 40, 80, 160, 320, 320, 640 or
1280.

• Reached a number of probed vertices: 5, 10, 20, 40, 80, 160, 320, 320 or
640.

• Reached a number of surveyed edges: 10, 20, 40, 80, 160, 320, 320, 640 or
1280.

• Reached a number of inspected vehicles: 5, 10, 20, 40, 80, 160, 320, 320
or 640.

• Reached a number of successful attacks: 5, 10, 20, 40, 80, 160, 320, 320
or 640.

• Reached a number of successful parries: 5, 10, 20, 40, 80, 160, 320, 320 or
640.

10 Percepts

In every step, the agents get these percepts:

• state of the simulation, i.e. the current step,

• state of the team, i.e. the current scores and money,

• state of the vehicle, i.e. its internals as described above,

• visible vertices, i.e. identifier and team,

• visible edges, i.e. its vertices’ identifiers,

• visible vehicles, i.e. its identifier, vertex, team,

• probed vertices, i.e. its identifier and its value,

• surveyed edges, i.e. its vertices’ identifiers and weight, and

22

• inspected vehicles, i.e. its identifier, vertex, team and internals.

Please refer to the protocol description for the details about percepts.
We also have the notion of shared percepts. Agents of the same team that

are in the same zone share their percepts, that is visible vertices, edges and
vehicles, and probed vertices, surveyed edges and inspected vehicles.

11 Simulation State Transition

The simulation state transition is as follows:

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.

12 Statistics

New in 2013: Statistics for debugging.

The server generates also some statistics that are useful for debugging. In
the following we provide a short overview of the generated files:

Achievement-Points: The chart depicts the achievement-points of both teams
in every step of the current simulation. The points increase, when a team gets
an achievement and decrease, when the buy-action is used.

TEAMNAME ROLENAME Actions The chart show the actions of all
four agents of the respective role in the given team. Every bar represents one
action the role is allowed to use. The whole bar (green and red) relates to
the frequency the action was sent by the agents. The absolute and relative
numbers for this frequency are given in blue above the chart. The percentage
relates to all actions that were sent by this specific role’s agents in the current
team. The green part of the bar represents the number of succeeded actions,
that is actions which did not fail. Again, the number of succeeded actions is
given in green above the respective bar. The blue numbers under the bar give
relative frequencies of each action in relation to all actions that were sent by
every agent of the current team in the course of the simulation. Finally, if one
or more agents of this role try to send an action they aren’t allowed to use, this
fact is mentioned in the legend under the chart.

23

ACHIEVEMENTNAME-Achievements There is one chart for every cat-
egory of achievements. It shows, in which step which quantity of the respective
achievement was reached by all teams which participate in the current simula-
tion.

Summed Scores The chart depicts the summed score of each teams in each
step of the current simulation.

ZonesScores The chart depicts the ZonesScores of each teams in each step
of the current simulation. The ZonesScore derives from the number and value
of the currently dominated nodes.

ZonesScores and AchievementPoints This chart is just a combination of
both ZonesScores- and Achievement-Points-chart.

ZoneStabilities The chart depicts the ZoneStabilities of each teams in each
step of the current simulation. The ZonesStability increases for one team, if the
team can hold all conquered nodes over a longer period of time. If nodes are
lost, the value decreases.

24

	Introduction
	Background Story
	The Challenge
	Visualization
	Mode 2011
	Mode 2012
	Mode 2013

	Graph Coloring Algorithm
	Teams & All Terrain Planetary Vehicles
	Agent Actions
	Ranged Actions
	Actions' Failure Codes

	Disabled Agents
	Money
	Percepts
	Simulation State Transition
	Statistics

