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1 Introduction

In this preface to the special issue we (1) briefly introduce our Contest and its development
in the last 10 years, (2) elaborate on the brand new 2016 scenario, (3) introduce the five
teams that took part in the tournament, (4) analyze and interpret interesting matches, and
(5) evaluate the performance and strategies of the teams.

The Multi-Agent Programming Contest (MAPC) is an annual international event
that started in 2005, initiated by Jürgen Dix and Mehdi Dastani. It is an attempt to
stimulate research in the field of programming multi-agent systems by 1) identifying key
problems, 2) collecting suitable benchmarks, and 3) gathering test cases which require and
enforce coordinated action that can serve as milestones for testing multi-agent programming
languages, platforms and tools. In 2016 the competition was organized and held for the
tenth time.

1http://multiagentcontest.org
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Detailed information about the strategies of the teams can be found in the subsequent
papers in this volume.

1.1 Related work

For a detailed account on the history of the contest as well as the underlying simulation
platform, we refer to [2, 4, 6, 7, 1]. A quick non-technical overview appeared in [3].

Similar contests, competitions and challenges have taken place in the past few years.
Among them we mention Google’s AI challengea, the AI-MAS Winter Olympicsb, the
Starcraft AI Competitionc, the Mario AI Championshipd, the ORTS competitione, the
Planning Competitionf, and the General Game Playingg. Each of these rests in its own
research niche. Originally, our Contest has been designed for problem solving techniques
that are based on formal approaches and computational logics. But this is not a requirement
to enter the competition. In fact, there are almost always approaches that are not even based
on agent technology (eg. the runner-up in this years contest).

1.2 History: The contest from 2005 to 2014

Through the history of the Contest, changes to the scenarios were introduced with every
new edition including four major redesigns.

From 2005 to 2007, a classical gold miners scenario was used. We introduced the
MASSim software: A platform for executing the Contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario, which was designed
to enforce cooperative behavior among agents [5]. The topology of the environment was
represented by a grid that contained, besides various obstacles, a population of simulated
cows. The goal was to arrange agents in a manner that scared cows into special areas,
called corrals, in order to get points. While still maintaining the core tasks of environment
exploration and path planning, the use of cooperative strategies was a requirement of this
scenario.

In 2011, the agents on Mars scenario [6] was newly introduced. In short, the environment
topology was generalized to a weighted graph. Agents were expected to cooperatively
establish a graph covering while standing their ground in an adversarial setting and reaching
certain achievements. The basics of the agents on Mars scenario remained until the 2014
editionh, although several modifications were introduced to keep the Contest challenging.

In 2015, work on the current scenario, which is presented later in this paper, began. This
new scenario was first used in the contest’s 2016 edition.

1.3 History II: Participants and their origins

In its 11 editions, the Contest has seen 70 teams from all over the world. Figure 1 shows
the development of team numbers over the years.

ahttp://aichallenge.org/
bhttp://www.aiolympics.ro/
chttp://eis.ucsc.edu/StarCraftAICompetition
dhttp://www.marioai.org/
ehttp://skatgame.net/mburo/orts/
fhttp://ipc.icaps-conference.org/
ghttp://games.stanford.edu/
hThe 2014 contest was an “unofficial” edition (i.e. no publications and prizes, only glory) with no changes to

2013.
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Figure 1: Participants of the Multi-Agent Programming Contest through the years

In its humble beginnings, the Contest started off with 4 teams in 2005 and 3 the year
after. From then on, the number of teams monotonically increased until 2011, the best
year yet with 10 participating teams. The number has gone down to 5 teams since and has
remained there for 3 editions now.
The majority of teams originated from academia, while only 2 contestants competed without
affiliation.
As of today, we are counting 19 different countries. The most frequently participating
country, Germany, denotes a total of 22 attempts to win. This is mostly due to the tireless
efforts from the Technical University of Berlin, who started in 2007 and have not missed
a contest since, sometimes even contributing two teams in the same year. This has already
fetched them the first place in 4 consecutive editions, starting right in 2007.
Closely following is Brazil, with 12 attempts and leading the list of winning countries with
5 first placements from 3 universities. The team from Federal University of Santa Catarina
participated in every instance of the Mars scenario and won all 3 contests.
Brazil is immediately followed by 8 participations of Danish teams, all from Technical
University of Denmark. They started participating in 2009, also not having missed a single
contest since, while having contributed two teams in 2014.
Starting in 2008, the Contest also saw a team from University College Dublin for 5
consecutive years. In the same order of magnitude, 7 teams from Iran participated already,
fully 4 teams just in 2011, 3 of which originated from Arak Univeristy, Iran.
Other sporadically participating countries, sorted by their first appearance, include the
UK, Japan, Chile, Spain, Switzerland, the Netherlands, Australia, Poland, France, Turkey,
Argentina, China, the U.S. and Greece.

2 MAPC 2016: The new scenario

The new scenario consists of two teams of agents moving through the streets of a realistic
city. The goal for each team is to earn as much money as possible, which is rewarded for
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completing certain jobs. Jobs comprise the acquisition, assembling, and transportation of
goods. These jobs can be created by either the system (environment) or one of the agent
teams.There are two kind of jobs: priced and auctioned. A team can accept an auctioned
job by bidding on it. The bid amount of money is the reward. If both teams bid, naturally
the lowest bid wins. If a job is not completed in time, the corresponding team is fined.
Priced jobs have a reward defined upfront, that is given to the first team to complete that
job. The teams have to decide which jobs to complete and how to do that, i.e. where to
get the resources and how to navigate the map considering targets like shops, warehouses,
charging stations, storage facilities.

A team consists of different types of agents. The agents differ in their speed, how
they move around the city, battery charge, the volume of goods they can carry, and which
tools they can employ to craft other items. Currently we have 4 agent roles: cars, trucks,
motorcycles, and drones.

Items can be bought, crafted, given to a teammate, stored, delivered as part of a job
completion, recovered from a storage facility, and dumped. These actions may happen at
their respective specific locations/facilities. The crafting of an item requires the use of other
products, some of which serve as prime matter and some as tools. Since each kind of
agent can only handle a subset of the tools, the crafting of some items requires the explicit
collaboration of 2 or more agents.

Agents feature a battery charge that gets decreased as they move around from one place
to another. They need to make sure they never run out of charge, and therefore should plan
their visits to the charging stations accordingly. Moving from one place to another, as well
as recharging the battery at a charging station, are actions that are carried on only partially
on each step, an may require several steps for completion.

Tournament points are distributed according to the amount of money a team owns at
the end of the simulation. To get the most points, a team has to beat the other, as well as
surpass a certain threshold.

3 The tournament

Following the tradition, a qualification round was held prior to the tournament, in which
teams were required to show that they were able to maintain good stability (i.e. timeout-rates
below 5%) during a round of test matches. Only then were they allowed to take part in the
tournament. The qualification rounds showed extremely positive results: each and every
team encountered not only a single timeout.

3.1 Participants and results

Five teams from around the world registered for the Contest and were able to pass the
qualification round, thus taking part in the tournament (see Table 1).

BathTUB: The team BathTUB [? ] from Technical University Berlin, Germany, is a regular
contender of the Multi-Agent Programming Contest. Their agents are once again
developed with the JIAC V platform (which won the contest several times in previous
years). This time, six students and their supervisor have spent around 1000 man-hours
developing their agent team. The approach is partly centralized, each agent being
coordinated by a central instance. To complete jobs, agents request proposals from
each other and reason locally how to retrieve the necessary items.
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Team Affiliation Platform/Language

BathTUB Technical University of Berlin JIAC V

Flisvos 2016 none Python

lampe Clausthal University of Technology C++

PUCRS Pontifical Catholic University
of Rio Grande do Sul

Jason, CArtAgO, Moise

Python-DTU Technical University of Denmark Python

Table 1 Participants of the 2016 Edition.

Flisvos 2016: The team Flisvos 2016 [? ], consisting only of a single person, participated
for the first time in the Contest and promptly made the second place, losing only
two simulations against this year’s winners. The agents were implemented in Python,
having invested roughly 250 hours. The centralized approach relies on no special
agent-related concepts.

lampe: The two people of team lampe [? ] from Clausthal University of Technology
developed their agents in C++, spending about 150 man-hours. They also rely on a
centralized approach together with a heuristic for choosing profitable jobs.

PUCRS: The team PUCRS [? ] from Pontifical Catholic University of Rio Grande do
Sul won this year’s contest, only losing a single simulation against the runner-up.
Approximately 230 man-hours were invested by the eleven members into developing
the agent team in JaCaMo (Jason, CArtAgO and Moise). The agents divide jobs into
tasks and distribute them with the well-known Contract Net Protocol, thus realizing a
decentralized solution.

Python-DTU: The team Python-DTU [? ] from the Technical University of Denmark is
another regular contender of the Multi-Agent Programming Contest. After having
tried GOAL in the 2013 (and 2014) edition, as the name suggests, the team changed
back to using Python for this Contest. The four members spent around 400 man-hours
developing their agents, not using any existing multi-agent technique or framework but
plain Python instead. As most of the other teams, they chose a centralized approach.

The tournament took place on the 12th and 13th of September, 2016. Each day each
team played against two other teams so that in the end all teams played against each other.
We started the tournament each day at 13pm and finished around 6pm. A match between
two teams consisted of 3 simulations differing in the map that was used and the properties
of jobs that were offered by the system.

The teams were awarded 3 points for winning a simulation (minus 1 point if they did not
make a profit) and 1 point in case of a draw. The results of this year’s Contest are shown
in Table 2.

PUCRS secured an almost flawless victory, only losing a single simulation against
runner-up Flisvos 2016, thus scoring 33 out of 36 possible points. Flisvos 2016 in turn
only lost two of the simulations against PUCRS, resulting in 30 points total. Nevertheless,
Flisvos 2016 had a better score difference, which may be attributed to variations in the
simulation instances (see Subsection 3.2 for details).
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Pos. Team Score Difference Points
1 PUCRS 6,503,165 : 994,109 5,509,056 33
2 Flisvos 2016 7,197,893 : 941,069 6,256,824 30
3 lampe 1,320,153 : 1,601,549 -281,396 12
4 Python-DTU 532,714 : 7,764,645 -7,231,931 6
5 BathTUB -625,240 : 3,627,313 -4,252,553 5

Table 2 Results.

Following with a rather significant margin, team lampe made the third place with 12 points,
still one out of each three possible points. The points were gained from two victories each
against BathTUB and Python-DTU.
Making for a close battle for the fourth place, Python-DTU was able to take it with a one
point lead over BathTUB. Having the edge in their match against each other, Python-DTU
won 2 out of the 3 simulations. However, no team was able to make a profit, resulting in 4
and 2 points respectively. Both teams were able to win one simulation against team lampe,
resulting in 2 additional points for Python-DTU, and even 3 points for BathTUB, since they
made a profit in that simulation.

3.2 Simulation definition

As already mentioned, a match between two teams consisted of three simulations comprising
1000 steps each. These three simulations differed in the map that was used and the form of
jobs that were generated. However, each match featured the same three sets of simulation
parameters.
The first of each set of simulations was played on the street graph of (a part of) London.
Jobs had to be completed in 250 to 350 steps. The jobs’ rewards were comparatively the
lowest of all three simulations.
For the second simulation, played on a map of the German city Hannover, the job completion
time bounds were decreased by 25 steps each and the potential job rewards increased.
The same adjustments were made for the third simulation, played on the San Francisco
street graph, again decreasing completion times and increasing job rewards.

To summarize, in one match it became (on average) more difficult but at the same time
more rewarding to complete a job.

Note that, while the simulation sets featured the same parameters, of course the concrete
simulation instances that were played by the teams were (with a very high probability) never
the same due to the random generation mechanism. The goal was, as in previous editions of
the Contest, to generate a set of similar simulation instances, so that one could compare the
simulations afterwards without risking to give the agents the possibility to learn the exact
simulation from match to match (e.g. the prices of items or what job will be generated in
which step).

3.3 Strategies

In this section we collect a few more facts about the participants and their agent team
strategies. For more detailed information, we refer to the team description articles [? ? ? ?
? ] in these proceedings.
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PUCRS: The PUCRS agents start each simulation by exploring nearby shops to get
information about the prices of items. The exploration is coordinated with a token ring
communication, where each agent places its route to each facility if it is the shortest
one yet.
After that, they start evaluating the incoming jobs and estimate their costs (for
recharging the agents and buying or assembling the items). If a job’s reward surpasses
the cost, the agents try to complete it.
This is achieved by splitting the job into tasks which are distributed among the team
members using the Contract Net Protocol.
In addition, the agents try to deceive the opponent agents by posting their own jobs,
rather to distract them than to outsource a task.
Nearing the end of the simulation, the agents adjust their strategies

Flisvos 2016: The team uses a centralized approach, employing a global planning technique
together with known optimization heuristics. The agents only communicate by
updating a shared data structure in order to exchange percept information.

lampe: This team also uses a centralized approach for their agents, which are controlled
by a “mother-ship”. Jobs are evaluated with a heuristic method.

Python-DTU: The team also chose to employ a centralized approach.
Simulations have shown the agents to always spend a certain amount of money (a few
hundred up to 15,000) and then stopping any noticeable behavior. In one particular
match, the team tried a new strategy and posted up to 16 new (nonsensical) jobs in
each stepi.

BathTUB: Regarding centralization, the team used a hybrid approach for coordination,
whereas information was handled completely decentralized.
It was planned to complete jobs as fast as possible. To achieve that, a similar approach
to PUCRS was chosen: Any agent may initiate the planning of a job and receives
proposals from all the agents, i.e. which items they can procure at which cost. The
initiating agent then decides on the optimal course of action and informs the other
agents.
To prevent idling, a measure for proactiveness was implemented: the agents explore
the map, plan a new job or keep watch on the opponent agents.

4 Performance of the teams

In this section, we will look at how the teams performed in the Contest regarding scores,
completed jobs, stability and how they used certain aspects of the scenario.

4.1 Score and completed jobs

The score or the team’s money is mostly depending on how many jobs the team completed
and how economical the agents did it, as completing jobs is the only source of income in
the scenario. Money is decreased through buying items for the jobs or recharging the agents

iFortunately, only the web monitor had to be quickly patched to accommodate for the increased data volume.
The MASSim server and the opponent team were able to handle the situation well.
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when their energy gets low.
The scores and the number of completed jobs allow to assess a team’s overall performance
and compare it to other teams on the simulation level.j

PUCRS: The Contest winner completed 343 jobs in total, earning a money value of
18, 221, 172, or 53, 122 on average per job.
Comparing by simulation, the biggest difference in completed jobs was to Python-
DTU, the smallest to Flisvos 2016. Somewhere in between, we see similar numbers
for the simulations against BathTUB and lampe. PUCRS completed more jobs than
the opponent team in all but one simulation against Flisvos 2016 (also being the one
simulation they lost). However, in two simulations, Flisvos 2016 earned more money,
which means PUCRS was a little more efficient in choosing and completing jobs,
as they won one of these simulations anyways. Namely, in their second simulation,
PUCRS completed 13 jobs more, earning on average 11, 404 (vs. 21, 910 for Flisvos
2016), showing that PUCRS focused on smaller jobs.

Flisvos 2016: The runner-up completed 402 jobs, earning a total sum of 23, 247, 534.
Of course, the smallest difference in completed jobs shows in the simulations against
PUCRS. However, the numbers against all other teams look kind of similar. Flisvos
2016 was able to complete more jobs than any opponent team in all but two simulations.
Correspondingly, there was only one simulation where Flisvos 2016 earned less money
than the opponent.
Against lampe and BathTUB, the team completed smaller jobs in comparison in two
out of three simulations each. In contrast, against PUCRS the average reward of jobs
completed by Flisvos 2016 was higher in all 3 simulations.
This leaves us with two possible conclusions. Either, Flisvos 2016 was second best in
decomposing the agents into smaller teams, thus completing more jobs in parallel, or
the smaller size of jobs can be attributed to efficiency, being able to finish jobs with a
smaller reward and still making appropriate profit of it (but most likely a combination
of both).

lampe: The team completed rather few jobs compared to the previous two. Also, it finished
less jobs than BathTUB in all of their three simulations, winning two of them regardless.
In their first simulation, they earned less money on average per job (and in total) than
BathTUB, resulting in the lost simulation. Interestingly, in their second simulation,
they still earned less money in total, but more on average per job. Having spent way
less money than BathTUB, this win went to lampe.
In two out of twelve simulations, one against PUCRS and one against Python-DTU,
lampe did not complete any job. In the first case, they finished with their starting capital,
indicating some kind of one-time bug.
Looking at the averages again, lampe aimed for comparatively high job rewards,
pointing to a rather conservative heuristic. Only in the first simulation against each
team the average reward for lampe was smaller compared to the opponent’s.

Python-DTU: Weirdly enough, the fourth-placed team did not complete a single job. They
won two simulations against BathTUB in which the opponent team finished with a big
negative score and one against lampe with a monetary lead of roughly 2, 000.

jDue to the random generation of simulations, score (i.e. money) comparisons on the Contest level can only
serve as estimations.
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BathTUB: The team completed more jobs than lampe or Python-DTU, in total 54.
Unfortunately, the agents could not make a profit in any simulation on the first day of the
Contest. On the second day, they showed a varying performance. For example, against
Flisvos 2016, BathTUB was able to make a good profit (+134, 763) followed by a
rather big loss (−558, 096) and only a small loss (−12, 742). In all of these simulations,
the team completed a similar amount of 4-6 jobs, pointing to rather unpredictable
investments. Their average reward against Flisvos 2016 was higher in two out of three
cases, however, they completed far less jobs.
Against lampe, they won the first simulation, in which they completed jobs with a
higher average reward. In the following two simulations, they still completed more
jobs but with a lower average reward than their opponent and lost both of those, again
with varying final scores: some profit in the first simulation, some loss in the second
and a good (but not big enough) profit in the third.

Having a final look at the completed jobs overall, none of them has been posted by
any competing team, i.e. unfortunately the teams did not try or succeed in fooling their
opponents into doing some work for them.

4.2 Agents’ behavior

In this section, we will have a look at what actions the agents used to which extent and how
that possibly affected the outcome of single simulations and the Contest as a whole.
As each team consisted of 16 agents, there were 16, 000 actions in each simulation per team.
A big part of the actions of all teams is naturally made up of the actions skip, continue
and abort, as those are necessary to maintain the also frequently used actions goto and
charge.
Also, the actions store, retrieve, give and retrieve were not used at all,
indicating the direction in which the scenario needs to be improved. Total action counts for
all teams can be found in Table 3.

4.2.1 PUCRS

The team used the actions corresponding to job activities according to previous observations.
Comparing these job related actions, as depicted in Figure 2 and 3 for the first and second
simulation against Flisvos 2016, the numbers go in line with PUCRS having completed the
most jobs in the Contest. Looking at the first simulation (where PUCRS lost), we see that
PUCRS used more deliver but less buy actions than the opponent. However, around
50% of PUCRS’ deliver actions against Flisvos 2016 failed, many of them due to the
job not being active (possibly already completed by Flisvos 2016) or because the delivering
agent did not carry any items that were still missing for the particular job. Thus we can
conclude that PUCRS employed less partial deliveries than Flisvos 2016, as they needed
less (successful) actions to complete more (or comparable amounts of) jobs.

From the same Figures, we can see that PUCRS did not use any actions for
assembling products (making it another action to promote in future editions of the
Contest). Indeed, PUCRS did not use the actions assemble, assist_assemble,
retrieve_delivered and bid_for_job for the entirety of the Contest (in addition
to the actions that were never used by any team).

The buy action was used the most by PUCRS which also agrees with them having
completed the most jobs. They were also the only team to use the dump action, however,
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Flisvos 2016 lampe BathTUB PUCRS Python-DTU
goto 5224 3721 26860 7134 4892

noAction 0 35824 7823 1855 4010
skip 169034 192 153588 137936 142011
abort 0 108491 32 0 0

continue 0 19245 0 35017 3932
charge 2042 2951 1885 2326 3910
retrieve 0 0 0 0 0

retrieve_delivered 0 406 0 0 0
store 0 0 0 0 0
dump 0 0 0 36 0

deliver_job 1219 274 406 1764 0
buy 1695 342 1166 2044 164

assemble 0 10010 0 0 17734
assist_assemble 0 10269 0 0 12483

give 0 0 0 0 0
receive 0 0 0 0 0
call_b. 12824 467 0 3338 0

post_job 154 0 0 742 3056
bid_for_job 0 0 432 0 0

Table 3 Total action counts

Figure 2: Job actions - Flisvos 2016 vs.
PUCRS- simulation 1 of 3

Figure 3: Job actions - Flisvos 2016 vs.
PUCRS- simulation 2 of 3

there were only 36 cases where they saw the need to dispose of some items, 20 of them
in the match against Flisvos 2016. The post_job action was used sparingly in order to
distract the opponent teams by adding nonsensical jobs and therefore consuming some of
their processing time.

Finally, the team was one of the few to use the call_breakdown_service action
regularly, counts reaching from 100 to 500 times per simulation. However, as the action has
to be called repeatedly (25 times if it does not fail randomly) to have an effect, this amounts
roughly to each agent being left without charge 0 to 2 times per simulation.
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4.2.2 Flisvos 2016

The action counts of team Flisvos 2016 are overall similar to PUCRS. The actions abort
andcontinuewere not used, the latter being replaced by moreskip actions. The team did
not make use of the storage actions retrieve, store and dump. Also, bid_for_job
and retrieve_deliveredwere not used, thus ignoring auction jobs and the possibility
to retrieve (unsuccessful) partial deliveries.
Unfortunately, the explicitly cooperative actions give, receive, assemble,
assist_assemble were also not used at all by Flisvos 2016 (again, possibly not being
pushed enough by the concrete simulation instances).

Flisvos 2016 was one of three teams to use the call_breakdown_service action,
even three times more often than PUCRS, indicating either a tiny routing/planning problem
or that the team accepted to use the action in order to complete some otherwise unachievable
jobs.

The post_job action was also used, however, more moderately than by PUCRS. As
no team completed a job posted by an opponent team, the team did not need to use the
retrieve_delivered action, as noted above.

Comparing the job related action counts to those of BathTUB, e.g. for their first
simulation as given in Figure 4, again the difference in buy and deliver actions becomes
obvious.

Figure 4: Job actions - BathTUB vs. Flisvos 2016- simulation 1 of 3

4.2.3 lampe

The lampe team decided to use the continue action in combination with abort in place
of skip, thus being the only team to make sure that ongoing actions are explicitly stopped.

Interestingly, the team was the only one attempting to use theretrieve_delivered
action (however, only making up ca. 0.2% of their actions). Unfortunately, the action only
succeeded 20 times out of 406 for them.
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The lampe agents did not use the give and receive actions, but they performed
the most successful assemble (and accordingly assist_assemble) actions, which
allowed them access to more valuable jobs. The ratio of these actions was almost 1 : 1
suggesting that most often exactly two agents cooperated.

Of the teams to use the deliver_job action, this team used it the least, again
highlighting their conservative heuristic which made the agents only work on the most
rewarding jobs while forgoing a lot of smaller ones.
For example, much of this can be seen in their third match against BathTUB, with both
teams’ actions compared in Figure 5 and the failed actions of team lampe in Figure 6.

Figure 5: Job actions - BathTUB vs. lampe-
simulation 3 of 3

Figure 6: Failed job actions lampe- BathTUB
vs. lampe- simulation 3 of 3

We see that lampe used fewer delivery actions but had some successful assemblies.
Comparing this to the money development in that simulation, as charted in Figure 7, one can
see again how it paid off (here) to complete jobs with higher rewards on average, especially
halfway through the simulation, where BathTUB only little more than broke even. Counting
the increments, BathTUB indeed completed one job more than lampe in this simulation.

4.2.4 Python-DTU

The team Python-DTU used all the common actions to a “normal” degree, featuring a
relatively high amount of skip actions.

Regarding storage actions, the team did not use any of them (e.g. retrieve or
deliver). Also, as with any other team, give and receive where not used. As for
the remaining actions, the team did not make use of bid_for_job and - surprisingly -
deliver_job.

The team used even less buy actions than lampe: only 164 during the whole Contest.
However, surprising us again, the team used the most (assist-)assemble actions out
of all teams, even surpassing team lampe by roughly 77%. Recall that those were the only
two teams to use these actions at all.

Probably as an attempt to completely occupy the opponent agents, the team used a
comparatively high amount of post_job actions. Fortunately, only the simulation web
monitor seemed to struggle with that much new information and could be quickly repaired.
This behavior was only observed in certain simulations, e.g. the first one against lampe,
as depicted in Figure 8. In simulations where the Python-DTU team used less post_job
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Figure 7: Money - BathTUB vs. lampe- simulation 3 of 3

actions, the amount of assemble actions was noticeably higher. In the accompanying
Figure 9 we can also observe that the majority of assemble actions failed.

Figure 8: Job actions - lampe vs. Python-
DTU- simulation 1 of 3

Figure 9: Failed job actions Python-DTU-
lampe vs. Python-DTU- simulation 1 of 3

4.2.5 BathTUB

The BathTUB team also used no common action to an unusual degree. As the others, the
team did not use the storage actions, nor any of the cooperative assembly and item exchange
actions.

Like Python-DTU, the team did not need the call_breakdown_service action.
Also, the BathTUB agents did not make use of the post_job feature. On the other hand,
they were the only ones to use the bid_for_job action, which did not fail in most of the
cases. Unfortunately, none of these auction jobs was completed successfully.

The amount of buy actions for team BathTUB lies somewhere beneath that of PUCRS
and Flisvos 2016, but considerably above that of lampe and Python-DTU. The effect of
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these spendings can e.g. be observed in the second simulation of BathTUB against lampe,
as shown in Figure 10.

Figure 10: Money - BathTUB vs. lampe- simulation 2 of 3

Shortly after step 400, the teams are almost neck-and-neck, however, big investments
of BathTUB are not translated into greater rewards from then on.

4.3 Agents’ reliability and stability

In the last section, we mostly analyzed what the agents tried to do. Now, we will have a
look at the extent to which the agents submitted correct and sensible actions to the system.
For example, it does not make sense for an agent to perform a charge action if that agent
is not currently located within a charging station.

First off, the amount of noActions, which are registered if an agent does not submit
an action before the timeout, was considerably higher than in the qualification phase. In
fact, Flisvos 2016 was the only team to keep a flawless record of 0 noActions. The most
timeouts were encountered by team lampe, a solid 18.66% of their total actions. On the first
day of the Contest, their agents had a bug preventing them from reconnecting to a match
once they lost connection for the first time. Thus, almost half of their 35, 824 noActions
originated from a single simulation, their third one against PUCRS.

The second most noActions were had by team BathTUB, roughly a fifth of those of
team lampe. Python-DTU follows with half of that amount (i.e. ca. 4000) and PUCRS with
a little less than half of that again.

The actions that were received by the system could potentially fail due to a number of
reasons. Here, we will have a look at the causes of failed actions and how often they were
experienced by the teams.

failed_location: This happens whenever an agent tries to perform a location-specific action
outside of that location, i.e. charging, assembling or buying. It happened only a single
time to PUCRS and about 150 times to Python-DTU.
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failed_unknown_item: This error occurs if an agent specifies a non-existing item as
parameter to an action. It happened only a single time to PUCRS.

failed_unknown_facility: This is the same as above, but for facilities. It also occurred only
once for team PUCRS.

failed_item_amount: This occurs whenever an agent tries to use more items for an action
than it currently carries. It happened 13 times to PUCRS and about 12, 000 and 18, 000
times for lampe and Python-DTU respectively, making it the most frequently occurring
failure code. We can assume that both of the latter teams had a rather serious planning
problem, as these numbers explain the previously seen counts of failed assemble
actions.

failed_tools: Whenever a group of agents tries an assemble action without carrying the
necessary tools, this failure occurs. Again, this occurred to both lampe and Python-
DTU, about 7000 and 11, 500 times respectively, making it the other big cause of failed
assemble actions. As “failed_tools” takes precedence over “failed_item_amount”
and both cases could be satisfied at the same time, these numbers should be taken into
account at the same time.

failed_capacity: This occurred whenever an agent did not have enough inventory space to
obtain an item. It happened close to 600 times for each BathTUB and PUCRS.

failed_job_status: This code indicates that an agent tried to either bid for a job that’s not
up for auctioning, or deliver items to a job which has already been completed by the
opponent team. Concerning Flisvos 2016, this was their only self-inflicted failure and
on top only 2 times, probably due to PUCRS completing a job faster. Vice versa, the
same thing happened to PUCRS 239 times, almost only against Flisvos 2016, indicating
the same reason. The third and last team to experience the failure code was BathTUB
with 85 actions.

failed_counterpart: This occurs whenever an agent tries to assist an assembling agent,
but any requirement for assembling is not satisfied. Both teams who tried to assemble
items, Python-DTU and lampe, experienced this failure on a minor scale, i.e. 146 and
328 times respectively.

failed_random: With a chance of 1%, any action might fail and get this result. By the
nature of this failure, all teams had a similar rate of around 1% of their total actions.

useless: An agent causes this failure if it tries to deliver items towards the completion of
job, but does not possess any item that is still needed therefor. Both Flisvos 2016 and
Python-DTU did not cause this failure at all. BathTUB tried this only 35 times, lampe
74, and PUCRS a surprising 438 times.

Finally, the failure codes for invalid agent and job parameters, for an invalid location
passed to the goto action, for being in the wrong facility, for attempting to assemble an
item that cannot be assembled, for bidding on a job that is not an auction, and for using
wrong parameter types were not encountered by any agent during the Contest.
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4.4 Feature usage

As already suggested, there are a number of features of the scenario which have been used
only to a lesser degree or not at all. Since it was the first time the new scenario was played,
it was not entirely clear how the participating teams would handle the different aspects.

For one, the teams mostly did not use the assemble action very much. In preparation
of the Contest, we balanced job rewards so that only by assembling items themselves the
teams would be able to net a notable profit. However, in previous tests, the testing agents
were not reliably earning money, which led us to the decision to increase base rewards so
that buying assembled items in shops still remained a viable though unfavorable option.

On the other hand, auction jobs were neglected as well, possibly due to an abundance of
regular jobs, which do not have a potential penalty attached (though of course any regular
job comes with the risk of the opponent team completing it faster).

The storage facilities were also not used. Probably, the teams were mostly able to deliver
the items they bought for their jobs on demand, while stocking up on certain items up front
would have been more risk than reward.

Regarding jobs, the teams have used the post_job action, yet only to divert the
opponent team’s attention and add to the information those agents have to process, instead
of outsourcing some of their own work.

5 Interesting simulations

In this section, ...

6 Summary, conclusion, and going forward

In conclusion, we have seen an interesting Contest and a solid first run of the new scenario
which we can use as a foundation for future improvements. Judging from the previous
section, we need to put some effort into pushing the scenario into a more cooperative
direction. One way of doing this is to put more emphasis on or even enforce the use of the
assemble action and the related systems. A rework of this is already in progression and
should become ready in early 2017.

Also, the scenario still leaves room for more contention among the opposing teams. This
year, the teams could mostly just work alongside each other without having much influence
on the other team’s possibilities.

As we are already looking forward to the next edition of the Contest in 2017, we have
to admit that our marketing is still capable of development. With a stagnating number of
participants since 2013, which had its peak in 2011, this has also moved up on our agenda.

One thing that is also on our list is adding more than two teams to the same simulation.
The current scenario would provide for this naturally, however, the underlying technical
system has evolved with only two teams in mind, making this a rather big undertaking.
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