
Final Report

Josephine Krause1, Marc Schmidt1 and Muzammal Hussain1

1 Technische Universität Berlin, 10623 Berlin, Germany

Abstract. The following paper is the final report for the Application System

Project B in the summer term 2018. The project concentrates on finding a de-

centralized solution for the Multi-Agent Programming Contest 2018. In order to

implement a solution, a strategy had to be defined. In this approach, a team-

oriented strategy was chosen. The coordination of the agents of the simulation

was done by using an auctioning process similar to the Contract Net Protocol.

For the evaluation of the approach, different metrics concerning the perfor-

mance and the success were measured and processed.

Keywords: Multi-Agents, Decentralized Systems, Auctioning

1 Introduction

Working well as a team requires coordination and strategy as well as a common goal.

This does not only apply to people who are trying to solve a problem together but it

also applies to systems that are using multiple agents. If one is looking for a decen-

tralized approach in such a system, one has to ensure that the agents are able to coor-

dinate in line of their strategy.

An example for such a system is the simulation of the Multi-Agent Programming

Contest 2018 [1]. The scenario given in this contest states that a team of agents must

work together in order to win the simulation. There are four different kinds of agents,

drones, trucks, cars and motorcycles, and they have different properties. Furthermore

the simulation is providing different facilities like stores, shops, dumps, charging

stations and resource nodes. Additionally, it provides different kinds of items. In order

to find the items and their resource nodes, the agents firstly need to explore the city.

The items are needed for different jobs that can be done by the agent. A job con-

sists of delivering a certain amount of items to given stores. The server has been con-

figured so that the assembly of items will not be requested. When a job is done, the

team will receive a reward in the form of Massiums, the currency of the simulation.

The team can use this money to upgrade their skills or to build wells.

There are different kinds of jobs that can be done: mission jobs, priced jobs and

auction jobs. Mission jobs are the only jobs a team has to do. The team is assigned to

this mission job. If it fails to do the job it has to pay a fine. Priced jobs can be done by

any team. The first team that finishes the job receives the payment. The third type of

job, auction jobs, can be done exclusively by one team if it wins the auction concern-

ing this job.

2

Wells are generating points because it is the goal of the simulation to solve a water

crisis in the year 2045 A.D. In a contest between two teams the one that earns the

most points wins.

In order to implement an elaborate approach, a strategy for the team had to be

found. This was already done once in the milestone report. Due to some reconsidera-

tion, the final strategy is differing from the initial strategy. Hence, the final strategy

will be explained in the second chapter.

In the third chapter the final implementation approach will be described. An evalu-

ation of the implementation will be done in chapter 4.

Finally, the structure of the team will be briefly explained in the fifth chapter.

2 Final Team Strategy

The final strategy of the team is differing slightly from the strategy that was planned

beforehand in the milestone. This includes the overall strategy. Initially, a specializa-

tion strategy was followed. But due to the need of faster accomplishments instead a

team-oriented strategy was chosen. Instead of defining roles and dedicating the differ-

ent kinds of agents to different kinds of assignments, e.g. using drones to explore the

city and trucks to hoard the items, now all agents are doing all assignments.

Subsequently, there was a shift in the different aspects of the overall strategy.

Those different aspects can be categorized in the following manner: Exploration,

Defining Roles, Sharing Information, Massium, Items, Jobs, Auctioning, Charging,

Idle Time, Upgrades, Wells and Failures.

The Exploration is done by using a grid. The agents choose the closest, unexplored

waypoint. Due to the team-oriented strategy, the exploration is done by all agents.

This ensures a faster exploration.

As stated before, defining the roles of the agents has been reconsidered. Since now

a team-oriented strategy is pursued, there are no roles to be defined. All tasks can be

done by all agents.

Sharing information is crucial to the functionality of the team. Therefore, infor-

mation about the items, the facilities, the wells, the agents and the visited grid points

are shared among the agents.

Massium, the currency of the game, is needed in order to build the wells and to up-

grade agents. Originally, it was planned to save the earned money. It was supposed to

be spent in a considerate manner. This strategy has changed since the simulation has a

limited amount of steps. When saving money up to a certain point, there is the risk

that the agents do not have enough time to build up the wells and let the wells gener-

ate enough points. Hence the money is spent on demand. As soon as there is enough

money to build a well, the building of the well is triggered.

Initially, it was planned to let the trucks gather items. Following the new strategy,

the gathering of the items is done on demand by all the agents. If an item is needed for

a job, it is gathered.

The handling of the jobs is mainly following the original strategy since it does not

necessarily require a specialization strategy. All the agents are committing to the jobs.

3

The jobs on the other hand are decomposed into tasks so they can be done by multiple

agents. Initially, a cost-benefit analysis of the jobs was planned but in order to im-

prove the efficiency, all jobs, except for the auction job which is not handled yet, are

done. If a job cannot be finished in time, the items required for the job are still stored

in the corresponding store, so the agent can empty its load.

Auctions are used for the coordination. Every job is assigned to an auctioneer. The

auction is done in stages. The job is decomposed into different tasks divided by the

items. It is possible that the tasks are linked since they can be depending on a forego-

ing task. For example, if one task is the gathering of an item and another task is the

delivery of that item to a store, they should be done by the same agent.

Since the battery of an agent is discharging during the actions, the charging must

be considered in the strategy. The charging is triggered in every state except for the

plan execution state because the plan execution should not be interrupted and there-

fore delayed.

If an agent is not executing a plan it is having some idle time. If that is the case, the

agents have the following priorities: firstly, they explore the city and then they start

building wells.

The initial strategy of specialization also considered that the skills of the agents are

upgraded depending on the role. Since this strategy was reconsidered, updates are

currently not done. This also aids the saving of the money. The risk that too much

money is spent on updates instead of on the wells must be avoided.

Initially it was planned to build the wells on the borders of the map. In order to

avoid predictability this strategy has been discarded. Now the wells are placed only in

positions where trucks have been before. This prevents that an agent might not reach a

chosen position. Furthermore, only one well at a time is built. Hence, conflicts in the

management of the Massiums are avoided. Wells are only built if enough money is

available. If two agents started to build wells at the same time, one of them could end

up not having enough money. Additionally, it is ensured that a well is build up com-

pletely so that it generates points before the building of a new well is started.

The failure of actions is handled mainly considering the exploration. If a grid point

cannot be reached by some agents, because the roads might not lead to it, the action

fails. If that is the case, a new grid point is assigned. The old grid point will be con-

sidered as explored and not be visited again.

To sum it up, the final strategy focuses on the cooperation of the agents without

considering specific roles.

3 Description of the Final Implementation Approach

To initiate the description of the final implementation, the architecture of the system

as it can be seen in the Graphic 1 must be explained. Generally, the system consists of

the following components: Simulation Server, MacRosBridge, Agent Node, Auc-

tioneer Node, Bidder Node and the Graphhopper. Graphhopper is tool used to calcu-

late the rout planning [2].

4

Graphic 1 System architecture and data flow

The Simulation Server is providing the information of the simulation to the Mac-

RosBridge using the XML Protocol.

The MacRosBridge can forward the information of the simulation to the Agent

Node. The Agent, which also contains a RHBPAgent, has an Agent that receives the

information from the MacRosBridge. In turn the Agent sends the information it

gained from the MacRosBridge to the Perception Management. Here the world per-

ception is managed.

The perception of the world is send to the RHBPAgent, the Auctioneer and the

Bidder, so all of them are sure to have the current world perception. This avoids fail-

ures which are due to incorrect information.

The RHBP Agent is component for ROS used for planning and decision making. It

is formed by a reactive behavior network and a symbolic planner [3].

The world perception, which is sent to the Auctioneer Node and the Bidder Node

by the MacRosBridge, also contains information concerning new jobs.

The MacRosBridge also can inform the Auctioneer Node about an incoming job.

The coordination of an incoming job is done with an auction. Every agent can be an

auctioneer. By using the IDs of both the agent and the job as well as the overall

amount of agents, the auctioneer is determined. This prevents that one agent might

always be the auctioneer.

The components Auctioneer Node and Bidder Node are needed for the coordina-

tion of the agents. As stated before the auctioneer receives information about an in-

coming job from the world perception it got from the MacRosBridge. The job is then

split into tasks in the Job Decomposer. The tasks are then spread in the auction.

5

When a Bidder Node receives the task from an Auction, it elaborates a plan using

its TaskHandler which in turn needs the Routing and the Graphhopper because the

way an agent has to cover is part of the plan.

The plan is used to bid for the auction. The Auctioneer chooses the bidder whose

plan has the lowest end step. Sometimes the duration of another plan might be shorter.

However, it must be considered, that the agent with the shortest duration could be

busy. Hence the agent might finish later even though the duration of the task is short-

er. Therefore the lowest end step was chosen.

Once the bidder was chosen and is assigned to a task, the assignment must be

acknowledged by the bidder. When this is done, the assignment is given to the Plan-

Handler. The assigned plans are given to RHBPAgent in the Agent Node. The RHBP

chooses a behavior. The behavior results in an action which is given to the Mac-

RosBridge. In turn, the MacRosBridge forwards the action to the Simulation Server

so it can be processed.

The class diagrams in the Graphics 2, 3 and 4 display the components of the differ-

ent nodes used in the system.

Graphic 2 Class Diagram of the Agent

The Class Diagram of the Agent is shown in the Graphic 2. Every Agent has a

RHBPAgent and a PerceptionManager which in turn has a world perception.

The RHBPAgent is using Graphs for the exploration behavior, the charging behav-

ior, the execute plan behavior and for the well behavior. The Graphs are using differ-

6

ent sensors like the DistanceSensor and the BatterySensor. More sensors are those

that indicate a running behavior or the finishing of a behavior like the Exploration-

Sensor and the FinishExplorationSensor.

The classes ExplorationBehaviorGraph, ChargingBehaviorGraph, ExecutePlanBe-

haviorGraph and WellBehaviorGraph have the corresponding ExplorationBehavior,

ChargingBehavior, ExecutePlanBehavior and the WellBehavior as well as the Fin-

ishExplorationBehavior, FinishChargingBehavior, FinishExecutePlanBehavior and

FinishWellBuildingBehavior. The behavior graphs are used to declare all the sensors

and behaviors. They also have more behaviors, for example the ChargeBehavior.

Each behavior graph has a predefined goal. In order to structure the various function-

alities the usage of the behavior graphs were chosen instead of a single class. Once

the finishing behaviors are triggered, the agent goes into the idle state.

The ExecutePlanBehavior must have a Plan it can execute. The Plan has the Ac-

tions which can be Store, Build, Gather, DeliverJob, GoToAction and Charge. Those

actions are needed for the execution of a plan.

Graphic 3 Class Diagram of the Auctioneer

The class diagram of the Auctioneer is displayed in the Graphic 3. The Auctioneer

uses a JobDecomposer to split the jobs into tasks. The tasks can be depending on one

another as stated before. A task can be a GatherResourceTask or a DeliverItemTask.

The former is about gathering an item needed for the job, the latter is about delivering

said items to a store. Since those tasks are link, an agent only can take part in a job if

it first gathers the amount of the item type demanded by the job. Then it delivers that

gathered item to corresponding storage. Hence, the two tasks are being done in row,

depending on each other. Each task belongs to a job. Jobs can be PricedJobs, Mission-

7

Jobs or AuctionJobs. The jobs are split into tasks in order to allow multiple agents to

do parts of the job. This accelerates the execution of the jobs.

The Auctioneer has several Auctions which in turn has the Job the auction is for,

the JobDecomposer and the Tasks provided by the JobDecomposer. An Auction can

be a PricedJobAuction, an AuctionJobAuction or a MissionJobAuction, depending on

the job that needs to be coordinated through the auction.

In Graphic 4 the class diagram of the bidder is shown. Each bidder has an instance

TaskHandler as well as a PlanHandler.

The TaskHandler has a class dedicated to the Routing which is using the

Graphhopper. Additionally, it creates Tasks for a certain job. The TaskHandler also

has the PlanHandler.

The PlanHandler has three different lists of Plans: unassigned plans, temporary

plans and assigned plans. Only the assigned plans will be sent to the RHBP Agent and

be executed there. Plans can be either a GatherResourcePlan or a DeliverItemPlan.

Those plans contain a Route which has various WayPoints.

Graphic 4 Class Diagram of the Bidder

The coordination of the agents is shown in the sequence diagram in Graphic 5.

Auctions equating the contract net protocol (CNP) are used for the coordination of the

agents. The CNP was developed by Reid G. Smith [4]. It is a high-level protocol for

nodes of distributed systems and enables cooperative task execution. This is a good

approach to conquer the MAPC. The manager of the CNP sends out a task an-

nouncement to the other nodes. These announcements contain a time frame for the

task as well as a task description. The bidders return a bid for the task announcement.

If a bidder was successful, it is informed by the manager. For the time of the contract

between the bidder and the manager, the bidder is called the contractor. As long as the

task is executed, the contractor is giving current status information to the manager.

This CNP is similar to the auctioning process used in this approach. The Percep-

tionManager is updating the Auctioneers world perception. This can include infor-

8

mation about new jobs. The Auctioneer then creates an auction. Requests for the auc-

tion are sent to the bidders which process them and respond with the plans to the auc-

tioneer.

If a bidder is chosen, it is temporarily assigned to the task. Only when each task is

assigned temporarily and the assignments are acknowledges, a plan is assigned defi-

nite. If a definite assignment fails, the auction gets restarted.

Graphic 5 Coordination

9

4 Evaluation

In order to evaluate the proposed system, various metrics have been monitored. They

have been grouped into the four different aspects Success, Performance, Jobs and

Wells.

The aspect Success contains the metrics Score and Massiums left. Score is the final

score reached in the simulation. Massiums left is the amount of money left at the end

of the simulation.

The aspect Performance contains the metrics Mean Action Response Duration

(MARD), Mean Decision Making Timeouts per agent (MDMT), Percentage Decision

Making Timeout steps (PDMT) and Mean Auction Stage Response (MASR). Mean

Action Response Duration is the average time in seconds that passes from sending a

request to receiving the response of an action. Mean Decision Making Timeouts per

agents is the average amount of timeouts that are happening while the agent is making

its decision. A decision timeout occurs when the triggering of an action by a behavior

is missing. Percentage Decision Making Timeout steps is the percentage of the overall

steps that are timeouts from the decision making process.

The aspect Jobs contains the metrics Total number of jobs, Jobs done, Priced jobs

done, Mission jobs done, Jobs failed, Priced jobs failed and Mission jobs failed. Total

number of jobs describes all the jobs that are available in the simulation. Jobs done

displays the sum of all the jobs that have been done by the team. It can be split into

the metrics mission jobs done and priced jobs done, which describe how many priced

or mission jobs have been done. Similarly, the metric Jobs failed describes the overall

amount of failed jobs. This metric can be differentiated by the job types, too.

The aspect Wells contains the metrics Amount and Costs. Amount describes the

amount of wells built by the team while Costs describes how much money in the cur-

rency Massium was spent to build these wells.

In order to gain reasoned results, the simulation was run with different random

seeds and different amounts of agents. The random seed values were 18, 20 and 22,

while the chosen amounts of agents was 8, 12 and 16. The amount of agents was cho-

sen to be a multiple of four so that each type of agent could be used in equal amounts.

Hence, three simulations were run with 8 agents, using the random seed values 18, 20

and 22. Three simulations were run with 12 agents, using the random seed values 18,

20 and 22. Consequently, three simulations were done with 16 agents, using the ran-

dom seed values 18, 20 and 22.

The average metrics for the different amounts of agents over the course of the three

simulations with the different random seeds 18, 20 and 22 are shown in Table 1.

In table 1 it is shown that the metrics of the aspect Performance (MARD, MDMT,

PDMT, MASR) are in average increasing the more agents are being used. This indi-

cates that the performance is getting worse when more agents are used. There are

more timeouts and the responses are taking longer. The reason for this is that the more

agents are used, the more processing needs to be done. Hence, the performance is

decreasing.

10

Table 1 Mean Metrics by agents

Metric 8 agents 12 agents 16 agents

Score 54657 32866 94233,33

Massiums left 11314,33 5965,66 2621,33

MARD 0,85241 1,17444 1,67276

MDMT 6,6 5,6 36

PDMT 0,0066733 0,00567 0,036

MASR 0,071513 0,07923667 0,0973733

Total number of jobs 202 211 201,33

Jobs done 84,667 118,67 142

Jobs failed 0,333 1,33 3,667

Amount of wells 3,667 5,667 15

Costs of wells 5996,333 13235 23658,667

Diagram 1 displays the average metrics of the aspect success for the various

amounts of agents over the different simulations. It shows that the more agents are

used, the less money is left. Furthermore it shows, that the highest scores are aimed

when using 16 agents. The low average score of the 12 agents is due to the simulation

using the random seed value 20. In this simulation the team only earned 184 points.

This value differs strongly from the scores of the remaining two simulations with 12

agents. When using the random seed value 18, the team scored 66030 points and

when using the random seed value 22, the team earned 32384 points. Hence, the aver-

age of the score for the simulations using 12 agents is lower than the scores aimed in

the other simulations using that amount of agents. But overall the trend shows that

more agents are able to earn more points. This is due to the fact that more agents can

do more jobs, thus earn more money and build more wells.

11

Diagram 1 Mean Success by agents

This is also shown in the amount of wells in Table 1. The more agents are being

used, the more wells are being built. Consequently, the costs for the wells are also

increasing.

The Diagram 2 shows what kind of jobs averagely have been done or failed more

often. It can be seen that priced jobs are being done the most. They are failing rarely.

Mission jobs are not done as much as priced jobs. This is due to the simulation. There

are more priced jobs to be done than mission jobs. The Diagram 2 also shows that

mission jobs failed very rarely. Since the teams have to pay a fine when they are not

doing the mission jobs, they are having a higher priority. Since the server has been

configured to not create jobs that require assembling, those jobs are not considered

here.

Table 1 is showing how many jobs have been done or failed overall. Both metrics

are increasing with the amount of agents. This is due to the fact that more agents are

able to do more jobs. On average there were 200 jobs to be done in each simulation.

Thus, not all jobs were done in the simulations.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

8 agents 12 agents 16 agents

Score

Massiums left

12

Diagram 2 Jobs by agents

To sum it up, the amount of agents influences the success of the simulation. Consider-

ing that in order to build wells and generate points, jobs have to be done to earn mon-

ey, this is reasonable. Furthermore the coordination of the team, the fulfillment of the

jobs is still working even if the team is growing up to 16 agents. Anyhow, the slight

decreases of the performance must be considered too.

All in all it can be said, that the provided system is giving a working approach on a

decentralized system using multiple agents.

5 Team Structure

The team consists of three members: Josephine Krause, Marc Schmidt and Muzam-

mal Hussain. During this project their main responsibilities were the following:

Josephine Krause was the group coordinator. Her main responsibility was the mon-

itoring of the progress as well as the preparation of the weekly progress presentation.

Furthermore, she was responsible for the quality of the reports and the presentations.

Marc Schmidt was the head of programming. He was responsible for the decisions

concerning the code, including the continuous improvements of the code. He also was

providing help and support to the other group members when it came to the pro-

gramming.

Muzammal Hussain was the scientist of the group. Doing the research necessary

for this project was his responsibility, so all decisions could be made in a reasonable

manner.

0

20

40

60

80

100

120

140

160

8 agents 12 agents 16 agents

Mission jobs done

Mission jobs failed

Priced jobs done

Priced jobs failed

13

References

1. MASSim Scenario Documentation,

https://github.com/agentcontest/massim/blob/master/docs/scenario.md, last accessed

2018/07/21.

2. Graphhopper Homepage, https://www.graphhopper.com/, last accessed 2018/07/21.

3. RHBP Homepage, https://gitlab.tubit.tu-berlin.de/hrabia/rhbp, last accessed 2018/07/21

4. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-

tributed Problem Solver. IEEE Trans. on Computers C-29(12):1104-1113.

https://gitlab.tubit.tu-berlin.de/hrabia/rhbp

