
Multiagent Systems I
Prof. Dr. Jürgen Dix

Department of Informatics
Clausthal University of Technology

SS 2010

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 1

Time: Monday, Tuesday: 10–12
Place: T2 (lecture), IfI R301 (labs)
Labs: From 27. April on.

Website
http://www.in.tu-clausthal.de/abteilungen/

cig/cigroot/teaching
Visit regularly!

Lecture: Prof. Dix, T. Behrens, M. Köster
Labs: T. Behrens, M. Köster

Schein: Lab work

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 2

http://www.in.tu-clausthal.de/abteilungen/cig/cigroot/teaching
http://www.in.tu-clausthal.de/abteilungen/cig/cigroot/teaching

About this Lecture
This course gives a first introduction to multi-agent systems
for Bachelor students. Emphasis is put on applications and
programming MAS, not on theory. We consider one
programming language together with a platform for
developing agents: JASON. Students are grouped into
teams and implement agent teams for solving a task on our
agent contest platform. These teams compete against
each other.

My thanks go to Tristan Behrens, Michael Köster and our
students who prepared the lab work and also some of the
slides of this course. In addition, Mehdi Dastani and
Jomi Hübner provided me with some slides.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 3

References

Wooldridge, M. (2002).
An Introduction to Multi Agent Systems.
John Wiley & Sons.

Rafael H. Bordini, Jomi Fred Hübner and Michael
Wooldridge (2007).
Programming Multi-Agent Systems in AgentSpeak using
Jason.
John Wiley & Sons.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 4

Lecture Overview

1. Week: 1. Introduction
2. Week: 2. Jason
3. Week: 3. Jason Logic Programming
4.-14. Week: Labs.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 5

Outline

1 Introduction

2 Jason

3 Jason Logic Programming

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 6

1 Introduction

1. Introduction
1 Introduction

Why Agents?
Intelligent Agents
Formal Description

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 7

1 Introduction

Content of this Chapter:
We are setting the stage for a precise discussion of agency.
From informal concepts to (more or less) mathematical
definitions.

1 MAS versus Distributed AI (DAI),
2 Environment of agents,
3 Agents and other frameworks,
4 Runs as characteristic behaviour,
5 state-based versus standard agents.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 8

1 Introduction
1.1 Why Agents?

1.1 Why Agents?

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 9

1 Introduction
1.1 Why Agents?

Three Important Questions
(Q1) What is a (software) agent?
(Q2) If some program P is not an agent, how can it

be transformed into an agent?
(Q3) If (Q1) is clear, what kind of Software

Infrastructure is needed for the interaction of
agents? What services are necessary?

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 10

1 Introduction
1.1 Why Agents?

Definition 1.1 (Distributed AI (DAI))
The area investigating systems, where several autonomous
acting entities work together to reach a given goal.

The entities are called Agents, the area Multiagent
Systems.

AAMAS: several conferences joined in 2002 to form the
main annual event. Bologna (2002), Melbourne (2003),
New York (2004), Utrecht (2005), Hakodate (2006), Hawaii
(2007), Lisbon (2008), Budapest (2009).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 11

1 Introduction
1.1 Why Agents?

Example 1.2 (RoboCup)

Figure : 2D-Simulation league: RoboCup 2007 Final

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 12

1 Introduction
1.1 Why Agents?

Example 1.3 (RoboCup)

Figure : 3D-Simulation league: RoboCup 2007 Final

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 13

1 Introduction
1.1 Why Agents?

Example 1.4 (RoboCup)

Figure : Small size league

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 14

1 Introduction
1.1 Why Agents?

Example 1.5 (RoboCup)

Figure : Middle size league

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 15

1 Introduction
1.1 Why Agents?

Example 1.6 (RoboCup)

Figure : Standard platform

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 16

1 Introduction
1.1 Why Agents?

Example 1.7 (RoboCup)

Figure : Humanoid league

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 17

1 Introduction
1.1 Why Agents?

Example 1.8 (RoboCup)

Figure : Rescue league

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 18

1 Introduction
1.1 Why Agents?

Example 1.9 (Grand Challenge 2004)
Grand Challenge: Organised by DARPA since 2004.
First try: Huge Failure.

Figure : Grand Challenge 2004

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 19

1 Introduction
1.1 Why Agents?

Prize money: 1 million Dollars
Race course: 241 km in the Mojave desert
10 hours pure driving time
More than 100 registered participants, 15 of them were
chosen
No one reached the end of the course
The favourite “Sandstorm” of Carnegie Mellon in
Pittsburgh managed 5% of the distance

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 20

1 Introduction
1.1 Why Agents?

Example 1.10 (Grand Challenge 2005)
Second try: Big Success:
Stanley (Sebastian Thrun) won in 2005.

Figure : VW Touareg coached by Stanford University

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 21

1 Introduction
1.1 Why Agents?

Prize money: 2 million Dollars
Race course: 212,76 km in the Mojave desert
10 hours pure driving time
195 registered participants, 23 were qualified
5 teams reached the end of the course (4 teams in
time)
Stanley finished the race in 6 hours and 53 minutes
(30,7 km/h)
Sandstorm achieved the second place

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 22

1 Introduction
1.1 Why Agents?

Example 1.11 (Urban Challenge)
Urban Challenge: Organised by DARPA since 2007.

Figure : Urban Challenge 2007

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 23

1 Introduction
1.1 Why Agents?

No straight-line course but real streets covered with
buildings.
60 miles
Prize money: 3,5 million Dollars
Tartan Racing won, Stanford Racing Team second,
VictorTango third place.
Some teams like Stanford Racing Team and
VictorTango as well as Tartan Racing were sponsored
by DARPA with 1 million Dollar beforehand.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 24

1 Introduction
1.1 Why Agents?

Example 1.12 (CLIMA Contest: Gold Mining)
First try: A simple grid where agents are supposed to collect
gold. Different roles of agents: scouts, collectors.

http://multiagentcontest.org

7
$

3

$
Figure : Gold mining elements

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 25

http://multiagentcontest.org

1 Introduction
1.1 Why Agents?

Figure : Gold Mining 2006: CLIMABot (blue) vs. brazil (red)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 26

1 Introduction
1.1 Why Agents?

Example 1.13 (Agent Contest: Chasing Cows)
Second try: Push cows in a corral.

http://multiagentcontest.org

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 27

http://multiagentcontest.org

1 Introduction
1.1 Why Agents?

Figure : Chasing Cows 2008

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 28

1 Introduction
1.1 Why Agents?

Figure : Chasing Cows 2009

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 29

1 Introduction
1.1 Why Agents?

Agents: Why do we need them?
Information systems are distributed, open, heterogenous.
We therefore need intelligent, interactive agents, that act
autonomously.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 30

1 Introduction
1.1 Why Agents?

(Software) Agent: Programs that are implemented on a
platform and have sensors and effectors to read
from and make changes to the environment,
respectively.

Intelligent: Performance measures, to evaluate the success.
Rational vs. omniscient, decision making

Interactive: with other agents (software or humans) by
observing the environment.
Coordination: Cooperation vs. Competition

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 31

1 Introduction
1.1 Why Agents?

MAS versus Classical DAI
MAS: Several Agents coordinate their knowledge and

actions (semantics describes this).
DAI: Particular problem is divided into smaller

problems (nodes). These nodes have common
knowledge. The solution method is given.

Attention:
Today DAI is used synonymously with MAS.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 32

1 Introduction
1.1 Why Agents?

AI DAI
Agent Multiple Agents
Intelligence: Intelligence:
Property of a Property of
single Agent several Agents
Cognitive Processes Social Processes
of a single Agent of several Agents

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 33

1 Introduction
1.1 Why Agents?

10 Desiderata
1. Agents are for everyone! We need a method to

agentise given programs.
2. Take into account that data is stored in a wide variety

of data structures, and data is manipulated by an
existing corpus of algorithms.

3. A theory of agents must not depend upon the set of
actions that the agent performs. Rather, the set of
actions that the agent performs must be a parameter
that is taken into account in the semantics.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 34

1 Introduction
1.1 Why Agents?

10 Desiderata
4. Every (software) agent should execute actions based

on some clearly articulated decision policy. A
declarative framework for articulating decision policies
of agents is imperative.

5. Any agent construction framework must allow agents
to reason:

Reasoning about its beliefs about other agents.
Reasoning about uncertainty in its beliefs about the
world and about its beliefs about other agents.
Reasoning about time.

These capabilities should be viewed as extensions to
a core agent action language.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 35

1 Introduction
1.1 Why Agents?

10 Desiderata
6. Any infrastructure to support multiagent

interactions must provide security.
7. While the efficiency of the code underlying a software

agent cannot be guaranteed (as it will vary from one
application to another), guarantees are needed that
provide information on the performance of an
agent relative to an oracle that supports calls to
underlying software code.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 36

1 Introduction
1.1 Why Agents?

10 Desiderata
8. We must identify efficiently computable fragments of

the general hierarchy of languages alluded to above,
and our implementations must take advantage of the
specific structure of such language fragments.

9. A critical point is reliability—there is no point in a
highly efficient implementation, if all agents deployed
in the implementation come to a grinding halt when
the agent “infrastructure” crashes.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 37

1 Introduction
1.1 Why Agents?

10 Desiderata
10. The only way of testing the applicability of any theory is

to build a software system based on the theory, to
deploy a set of applications based on the theory, and to
report on experiments based on those applications.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 38

1 Introduction
1.2 Intelligent Agents

1.2 Intelligent Agents

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 39

1 Introduction
1.2 Intelligent Agents

Definition 1.14 (Agent aaa)
An agent aaa is anything that can be viewed as perceiving its
environment through sensor and acting upon that
environment through effectors.

?

agent

percepts

sensors

actions

effectors

environment

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 40

1 Introduction
1.2 Intelligent Agents

Definition 1.15 (Rational, Omniscient Agent)
A rational agent is one that does the right thing
(Performance measure determines how successful an
agent is).

A omniscient agent knows the actual outcome of his actions
and can act accordingly.

Attention:
A rational agent is in general not omniscient!

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 41

1 Introduction
1.2 Intelligent Agents

Question
What is the right thing and what does it depend on?

1 Performance measure (as objective as possible).
2 Percept sequence (everything the agent has received

so far).
3 The agent’s knowledge about the environment.
4 How the agent can act.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 42

1 Introduction
1.2 Intelligent Agents

Definition 1.16 (Ideal Rational Agent)
For each possible percept-sequence an ideal rational agent
should do whatever action is expected to maximize its
performance measure (based on the evidence provided by
the percepts and built-in knowledge).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 43

1 Introduction
1.2 Intelligent Agents

Mappings:

set of percept sequences 7→ set of actions

can be used to describe agents in a mathematical way.

Hint:
Internally an agent is

agent = architecture + program

AI is engaged in designing agent programs

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 44

1 Introduction
1.2 Intelligent Agents

Agent Type Perform. Measure Environment Actuators Sensors
Medical diagnosis Healthy patient, Patient, hospital,Display questions, tests, Entry of symptoms,

system minimize costs staff diagnoses, treatments findings, patient’s answers
Satellite image Correct image Downlink from Display categorization Color pixel
analysis system categorization orbiting satellite of scene arrays

Part-picking Percentage of parts Conveyor belt Jointed arm Camera, joint
robot in correct bins with parts; bins and hand angle sensors

Interactive Maximize student’s Set of students, Display exercises, Keyboard entry
English tutor score on test testing agency suggestions, corrections

Table : Examples of agents types and their PEAS descriptions.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 45

1 Introduction
1.2 Intelligent Agents

Question:
How do environment properties influence agent design?

Definition 1.17 (Environment Properties)
Accessible/Inaccessible: If not completely accessible, one needs

internal states.

Deterministic/Indeterministic: An inaccessible environment might
seem indeterministic, even if it is not.

Episodic/Nonepisodic: Percept-Action-Sequences are independent
from each other. Closed episodes.

Static/Dynamic: While the agent is thinking, the world is the
same/changing. Semi-dynamic: The world does not
change, but the performance measure.

Discrete/Continous: Density of observations and actions. Relevant:
Level of granularity.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 46

1 Introduction
1.2 Intelligent Agents

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 47

1 Introduction
1.2 Intelligent Agents

xbiff, software demons are agents (not intelligent).

Definition 1.18 (Intelligent Agent)
An intelligent agent is an agent with the following
properties:

1 Autonomous: Operates without direct intervention of
others, has some kind of control over its actions and
internal state.

2 Reactive: Reaction to changes in the environment at
certain times to reach its goals.

3 Pro-active: Taking the initiative, being goal-directed.
4 Social: Interaction with others to reach the goals.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 48

1 Introduction
1.2 Intelligent Agents

Pro-active alone is not sufficient (C-Programs): The
environment can change during execution.

Socialisation: coordination, communication, (negotiation)
skills.

Difficulty: right balance between pro-active and reactive!

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 49

1 Introduction
1.2 Intelligent Agents

Agents vs. Object Orientation I

Objects have
1 a state (encapsulated): control over internal state
2 message passing capabilities

Java: private and public methods.

Objects have control over their state, but not over their
behaviour.
An object can not prevent others to use its public
methods.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 50

1 Introduction
1.2 Intelligent Agents

Agents vs. Object Orientation II

Agents call other agents and request them to execute
actions.

Objects do it for free, agents do it for money.
No analoga to reactive, pro-active, social in OO.
MAS are multi-threaded or even multi-processed:
each agent has a control thread or is a new process. (In
OO only the system as a whole possesses one.)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 51

1 Introduction
1.2 Intelligent Agents

A Simple Agent Program

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 52

1 Introduction
1.2 Intelligent Agents

In Theory Everything is Trivial

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 53

1 Introduction
1.2 Intelligent Agents

Example 1.19 (Agent: Taxi Driver)
PEAS description of the task environment for an automated
taxi:
Performance Measure: Safe, fast, legal, maximize profits
Environment: Roads, other traffic, pedestrians, customers
Actuators: Steering, accelerator, brake, signal, horn
Sensors: Cameras, sonar, GPS, odometer, engine sensors

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 54

1 Introduction
1.2 Intelligent Agents

Example 1.20 (Agent: Taxi Driver)
1 Production rules: If the driver in front hits the breaks,

then hit the breaks too.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 55

1 Introduction
1.2 Intelligent Agents

Agents as Intentional Systems

Intentions: Agents are endowed with mental states.

Matthias took his umbrella because he believed it was
going to rain.
Kjeld attended the MAS course because he wanted to learn
about agents.

An intentional system describes entities whose behaviour
can be predicted by the method of attributing beliefs,
desires and rational acumen.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 56

1 Introduction
1.3 Formal Description

1.3 Formal Description

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 57

1 Introduction
1.3 Formal Description

A First Mathematical Description

At first, we want to keep everything as simple as possible.

Agents and environments
An agent is situated in an environment and can perform
actions

A := {a1, . . . , an} (set of actions)

and change the state of the environment

S := {s1, s2, . . . , sn} (set of states).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 58

1 Introduction
1.3 Formal Description

How does the environment (the state s) develop
when an action a is executed?
We describe this with a function

env : S×A −→ 2S.

This includes non-deterministic environments.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 59

1 Introduction
1.3 Formal Description

How do we describe agents?
We could take a function action : S −→ A.

Agent
E

n
viro

n
m

en
t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 60

1 Introduction
1.3 Formal Description

Question:
How can we describe an agent, now?

Definition 1.21 (Purely Reactive Agent)
An agent is called purely reactive, if its function is given by

action : S −→ A.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 61

1 Introduction
1.3 Formal Description

This is too weak!

Take the whole history (of the environment)
into account: s0 →a0 s1 →a1 . . . sn →an

The same should be done for env!

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 62

1 Introduction
1.3 Formal Description

This leads to agents that take the whole
sequence of states into account, i.e.

action : S∗ −→ A.

We also want to consider the actions performed
by an agent. This requires the notion of a run
(next slide).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 63

1 Introduction
1.3 Formal Description

We define the run of an agent in an environment as a
sequence of interleaved states and actions:

Definition 1.22 (Run r, R = Ract ∪ Rstate)
A run r over A and S is a finite sequence

r : s0 →a0 s1 →a1 . . . sn →an . . .

Such a sequence may end with a state sn or with an action
an: we denote by Ract the set of runs ending with an
action and by Rstate the set of runs ending with a state.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 64

1 Introduction
1.3 Formal Description

Definition 1.23 (Environment, 2. version)
An environment Env is a triple 〈S, s0, τττ〉 consisting of

1 the set S of states,
2 the initial state s0 ∈ S,
3 a function τττ : Ract −→ 2S, which describes how the

environment changes when an action is performed
(given the whole history).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 65

1 Introduction
1.3 Formal Description

Definition 1.24 (Agent aaa)
An agent aaa is determined by a function

action : Rstate −→ A,

describing which action the agent performs, given its
current history.

Important:
An agent system is then a pair aaa = 〈action, Env〉 consisting
of an agent and an environment.
We denote by R(aaa, Env) the set of runs of agent aaa in
environment Env.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 66

1 Introduction
1.3 Formal Description

Definition 1.25 (Characteristic Behaviour)
The characteristic behaviour of an agent aaa in an
environment Env is the set R of all possible runs
r : s0 →a0 s1 →a1 . . . sn →an . . . with:

1 for all n: an = action(〈s0, a0 . . . , an−1, sn〉),
2 for all n > 0: sn ∈ τττ(s0, a0, s1, a1, . . . , sn−1, an−1).

For deterministic τττ , the relation “∈” can be replaced by “=”.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 67

1 Introduction
1.3 Formal Description

Important:
The formalization of the characteristic behaviour is
dependent of the concrete agent type. Later we will
introduce further behaviours (and corresponding agent
designs).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 68

1 Introduction
1.3 Formal Description

Equivalence
Two agents aaa, bbb are called behaviourally equivalent
wrt. environment Env, if R(aaa, Env) = R(bbb, Env).
Two agents aaa, bbb are called behaviourally equivalent, if they
are behaviourally equivalent wrt. all possible environments
Env.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 69

1 Introduction
1.3 Formal Description

So far so good, but...
What is the problem with all these agents and this
framework in general?

Problem
All agents have perfect information about the
environment!

(Of course, it can also be seen as feature!)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 70

1 Introduction
1.3 Formal Description

We need more realistic agents!

Note
In general, agents only have incomplete/uncertain
information about the environment!

We extend our framework by perceptions:

Definition 1.26 (Actions, Percepts, States)
A := {a1, a2, . . . , an} is the set of actions.
P := {p1,p2, . . . ,pm} is the set of percepts.
S := {s1, s2, . . . , sl} is the set of states

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 71

1 Introduction
1.3 Formal Description

Sensors don’t need to provide perfect information!

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 72

1 Introduction
1.3 Formal Description

Question
How can agent programs be designed?

There are four types of agent programs:
Simple reflex agents
Agents that keep track of the world
Goal-based agents
Utility-based agents

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 73

1 Introduction
1.3 Formal Description

First Try
We consider a purely reactive agent and just replace states
by perceptions.

Definition 1.27 (Simple Reflex Agent)
An agent is called simple reflex agent, if its function is
given by

action : P −→ A.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 74

1 Introduction
1.3 Formal Description

A Very Simple Reflex Agent

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 75

1 Introduction
1.3 Formal Description

A Simple Reflex Agent with Memory

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 76

1 Introduction
1.3 Formal Description

As before, let us now consider sequences of percepts:

Definition 1.28 (Standard Agent aaa)

action : P∗ −→ A

together with

see : S −→ P.

An agent is thus a pair 〈see, action〉.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 77

1 Introduction
1.3 Formal Description

Definition 1.29 (Indistinguishable)
Two different states s, s′ are indistinguishable for an agent
aaa, if see(s) = see(s′).

The relation “indistinguishable” on S× S is an equivalence
relation.
What does | ∼ | = |S|mean?
And what | ∼ | = 1?

As mentioned before, the characteristic behaviour has to
match with the agent design!

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 78

1 Introduction
1.3 Formal Description

Definition 1.30 (Characteristic Behaviour)
The characteristic behaviour of a standard agent
〈see, action〉 in an environment Env is the set of all finite
sequences

p0 →a0 p1 →a1 . . .pn →an . . .

where

p0 = see(s0),
ai = action(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1).

Such a sequence, even if deterministic from the agent’s
viewpoint, may cover different environmental behaviours
(runs):
s0 →a0 s1 →a1 . . . sn →an . . .

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 79

1 Introduction
1.3 Formal Description

Instead of using the whole history, resp. P∗, one can also
use internal states I := {i1, i2, . . . , in, in+1, . . .}.

Definition 1.31 (State-based Agent aaastate)
A state-based agent aaastate is given by a function
action : I −→ A together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is observed.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 80

1 Introduction
1.3 Formal Description

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 81

1 Introduction
1.3 Formal Description

Definition 1.32 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent aaastate

in an environment Env is the set of all finite sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an−1 (in,pn), . . .

with
p0 = see(s0),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1),
an = action(in+1),
next(in,pn) = in+1.

Sequence covers the runs r : s0 →a0 s1 →a1 . . . where

aj = action(ij+1),
sj ∈ τττ(s0, a0, s1, a1, . . . , sj−1, aj−1),
pj = see(sj)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 82

1 Introduction
1.3 Formal Description

Are state-based agents more expressive than standard
agents? How to measure?

Definition 1.33 (Env. Behaviour of aaastate)
The environmental behaviour of an agent aaastate is the set of
possible runs covered by the characteristic behaviour of the
agent.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 83

1 Introduction
1.3 Formal Description

Theorem 1.34 (Equivalence)
Standard agents and state-based agents are equivalent
with respect to their environmental behaviour.
More precisely: For each state-based agent aaastate and next
storage function there exists a standard agent aaa which has the
same environmental behaviour, and vice versa.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 84

1 Introduction
1.3 Formal Description

Goal based agents

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What it will be like
 if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

This leads to Planning.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 85

2 Jason

2. Jason
2 Jason

Motivation
Jason – Origins and Fundamentals
Reasoning
Comparison
Advanced Features

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 86

2 Jason

Content of this Chapter:
We introduce a particular agent language: Jason. We

1 motivate the BDI methodology,
2 elaborate on Jason’s origins and fundamentals, i.e.

Jason’s agent syntax,
3 explain Jason’s agents semantics, i.e. the deliberation

cycle, and finally
4 explain advanced features, i.e. plan failure, internal

actions, possible customizations, and environment
programming.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 87

2 Jason
2.1 Motivation

2.1 Motivation

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 88

2 Jason
2.1 Motivation

Beliefs, Desires, Intentions (BDI)

Model of human practical reasoning developed by
Michael Bratman.
Mental attitudes:

Beliefs: Informational state of the agent, beliefs
about the world.

Desires: Motivational state of the agent, states of
the world the agent wants to bring about.

Intentions: Deliberative state of the agent, what the
agent has chosen to do.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 89

2 Jason
2.1 Motivation

Example 2.1 (Student of Computer Science)
Belief: I am a student of computer science.
Belief: I am in my second semester.
Desire: Successfully attend the MAS-course.
Intention: Visit 1st lecture
...
Intention: Visit 6th lecture
Intention: Visit 1st exercise-class
...
Intention: Visit final exercise-class

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 90

2 Jason
2.1 Motivation

Example 2.2 (Mental Attitudes Change)
Belief: I am a student of computer science.
Belief: I am in my second semester.
Desire: Successfully attend the MAS-course.
Belief: I can learn Jason without the lecture.
Intention: Visit 1st exercise-class
...
Intention: Visit final exercise-class

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 91

2 Jason
2.2 Jason – Origins and Fundamentals

2.2 Jason – Origins and
Fundamentals

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 92

2 Jason
2.2 Jason – Origins and Fundamentals

Agent Oriented Programming
Reacting to events × long-term goals
Commit to courses of action as late as possible and
dependent of the circumstances
Plan failure (dynamic environments)
Rational agents
Social ability
Examples for the best known and publicly available
languages

Jadex (Pokahr, Braubach) http://jadex.sf.net
2APL (Dastani, Meyer) http://www.cs.uu.nl/2apl
GOAL (Hindriks)
http://mmi.tudelft.nl/~koen/goal.php
Jason (Bordini, Hübner) http://jason.sf.net

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 93

http://jadex.sf.net
http://www.cs.uu.nl/2apl
http://mmi.tudelft.nl/~koen/goal.php
http://jason.sf.net

2 Jason
2.2 Jason – Origins and Fundamentals

AgentSpeak

Originally proposed by Rao (1996)
Programming language for BDI agents
Abstract programming language aimed at theoretical
results
Elegant notation, based on logic programming
Inspired by PRS (Georgeff & Lansky), dMARS (Kinny),
and BDI Logics (Rao & Georgeff)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 94

2 Jason
2.2 Jason – Origins and Fundamentals

Jason

Jason implements the operational semantics of a
variant of AgentSpeak.
Has various extensions aimed at a more practical
programming language (e.g. definition of the MAS,
communication, . . .).
Highly customised to simplify extensions and
experimentation.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 95

2 Jason
2.2 Jason – Origins and Fundamentals

Programming in Jason
Agent programming: defining the initial state(s) of agent(s)
Multi-agent programming: specifying which agents are

situated in which environment (like a
project-file)

Internal-actions programming: library functions that do not
affect the environment (Java)

Environment programming: implementing the
environment (states), external actions (state
change) and percepts (from states to percepts)
(Java)

Implementing agent-internals: how the agent(s) work
internally, how interaction with other agents
and the environment works, how the belief-base
works (Java)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 96

2 Jason
2.2 Jason – Origins and Fundamentals

MAS Configuration Language I
Simple way of defining a multi-agent system

Example 2.3 (MAS using JADE as infrastructure)
MAS my_system {

infrastructure: Jade
environment: robotEnv
agents:

c3po;
r2d2 at jason.sourceforge.net;
bob #10; // 10 instances of bob

classpath: "../lib/graph.jar";
}

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 97

2 Jason
2.2 Jason – Origins and Fundamentals

MAS Configuration Language II
Configuration of event handling, frequency of
perception, user-defined settings, customisations, etc.

Example 2.4 (MAS with customised agent)
MAS custom {
agents: bob [verbose=2,paramters="sys.properties"]

agentClass MyAg
agentArchClass MyAgArch
beliefBaseClass jason.bb.JDBCPersistentBB(

"org.hsqldb.jdbcDriver",
"jdbc:hsqldb:bookstore",
...

}

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 98

2 Jason
2.2 Jason – Origins and Fundamentals

Agent Programming (Main Concepts)

Beliefs: Represent the information available to an agent
(e.g. about the environment or other agents)

Goals: Represent states of affairs the agent wants to
bring about

Events: Happen as a consequence to changes in the
agent’s beliefs or goals

Plans: Are recipes for action, representing the agent’s
know-how

Intentions: Plans instantiated to achieve some goal

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 99

2 Jason
2.2 Jason – Origins and Fundamentals

Agent Program

Initial belief-base: What the agent knows about the world
(environment, other agents, and itself) at the
beginning. Facts and rules.

Initial goal-base: Goals to achieve right from the beginning.
Plan-base: Plans are instantiated when events occur.

Sequences of actions.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 100

2 Jason
2.2 Jason – Origins and Fundamentals

Logic Programming Excursus I

There are three concepts in logic programming:
Facts: Knowledge.

father(abraham,isaac).
Rules: To derive new knowledge.

man(X) :- father(X,Y).
Queries: Is something known (derivable)?

?- man(abraham).
?- man(isaac).
?- man(X).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 101

2 Jason
2.2 Jason – Origins and Fundamentals

Logic Programming Excursus II
Terms:

Constants starting with a digit or a lower-case letter
abraham, lot, milcah, 1, 2, 3
Variables starting with an upper-case letter
X, Y, List, Family
(Compound) Terms f(t1, t2, ..., tn) composed
using constants, variables and functors
s(0), s(s(0))
Ground Terms are terms without variables. They are
also called fully instantiated.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 102

2 Jason
2.2 Jason – Origins and Fundamentals

Beliefs Representation
Syntax
Beliefs are represented by annotated literals in first order
logic:

functor(term1, ..., termn)[annot1, ..., annotm]

Example 2.5 (Belief Base of Agent Tom)
red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 103

2 Jason
2.2 Jason – Origins and Fundamentals

Changes in the Belief Base I

By Perception
Beliefs annotated with source(percept) are automatically
updated accordingly to the perception of the agent.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 104

2 Jason
2.2 Jason – Origins and Fundamentals

Changes in the Belief Base II

By Intention
The operators + and - can be used to add and remove
beliefs annotated with source(self).

+lier(alice); // adds lier(alice)[source(self)]
-lier(john); // removes lier(john)[source(self)]

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 105

2 Jason
2.2 Jason – Origins and Fundamentals

Changes in the Belief Base III
By Communication
When an agent receives a tell message, the content is a new
belief annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob
// adds lier(alice)[source(bob)] in Tom’s BB
...
.send(tom,untell,lier(alice)); // sent by bob
// removes lier(alice)[source(bob)] from Tom’s BB

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 106

2 Jason
2.2 Jason – Origins and Fundamentals

Logic Programming Excursus

In logic programming there are two different negations:
Negation as failure: Anything that is neither known to be

true nor derivable from the known facts using
the rules in the program, is assumed to be false
(not-operator, closed world assumption).

Strong negation: An agent explicitly believes something to
be false (˜-operator, open world assumption).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 107

2 Jason
2.2 Jason – Origins and Fundamentals

Strong Negation

Example 2.6 (Belief Base of Agent Tom)
red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].
~lier(bob)[source(self)].

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 108

2 Jason
2.2 Jason – Origins and Fundamentals

Rules in Belief Base

Example 2.7
likely_color(Obj,C) :-

colour(Obj,C)[degOfCert(D1)] &
not (colour(Obj,_)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

More later!

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 109

2 Jason
2.2 Jason – Origins and Fundamentals

Goals
Types

Achievement goal: Goal to do
Test goal: Goal to know

Syntax
Goals has the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

Example 2.8 (Initial Goal of Agent Tom)
!write(book).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 110

2 Jason
2.2 Jason – Origins and Fundamentals

New Goals I
By Intention
The operators ! and ? can be used to add a new goal
annotated with source(self)

...
// adds new achievement goal !write(book)[source(self)]
!write(book);

// adds new test goal ?publisher(P)[source(self)]
?publisher(P);
...

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 111

2 Jason
2.2 Jason – Origins and Fundamentals

New Goals II
By Communication – Achieve Goal
When an agent receives an achieve message, the content is
a new achievement goal annotated with the sender of the
message

.send(tom,achieve,write(book)); // sent by Bob
// adds new goal write(book)[source(bob)] for Tom
...
.send(tom,unachieve,write(book)); // sent by Bob
// removes goal write(book)[source(bob)] for Tom

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 112

2 Jason
2.2 Jason – Origins and Fundamentals

New Goals III

By Communication – Test Goal
When an agent receives an askOne or askAll message, the
content is a new test goal annotated with the sender of the
message

.send(tom,askOne,published(P),Answer); // sent by Bob
// adds new goal ?publisher(P)[source(bob)] for Tom
// the response of Tom will unify with Answer

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 113

2 Jason
2.2 Jason – Origins and Fundamentals

Events
Events happen as a consequence to changes in the
agent’s beliefs or goals
Types of events

+b (belief addition)
-b (belief deletion)

+!g (achievement-goal addition)
-!g (achievement-goal deletion)

+?g (test-goal addition)
-?g (test-goal deletion)

An agent reacts to events by executing plans

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 114

2 Jason
2.2 Jason – Origins and Fundamentals

Plan Library

The plans that form the plan library of the agent comes
from:

initial plans defined by the programmer
plans added dynamically and intentionally by
.add_plan
(resp. .remove_plan)
plans received from tellHow messages
(resp. untellHow)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 115

2 Jason
2.2 Jason – Origins and Fundamentals

Plans
Definition 2.9 (Plans)
An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
The triggering event denotes the events that the plan is
meant to handle,
the context represent the circumstances in which the
plan can be used,
the body is the course of action to be used to handle
the event if the context is believed true at the time a
plan is being chosen to handle the event.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 116

2 Jason
2.2 Jason – Origins and Fundamentals

Operators for Plan’s Context
Boolean operators

& (and)
| (or)

not (not)
= (unification)

>, >= (relational)
<, <= (relational)

== (equals)
\ == (different)

Arithmetic operators
+ (sum)
- (subtraction)
* (multiply)
/ (divide)

div (divide – integer)
mod (remainder)

** (power)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 117

2 Jason
2.2 Jason – Origins and Fundamentals

Operators for Plan’s Body
A plan’s body may contain:

Goal operators (!, ?, !!)
Belief operators (+, -, -+)
Actions and Constraints

Example 2.10 (Plan’s Body)
+beer : now(H) & time_to_leave(T) & H >= T

<- !g1; // new sub-goal
!!g2; // new goal
+b1(T-H); // add new self belief
-+b2(T*H); // update belief
?b(X); // new sub-goal
X > 10; // constraint to continue the plan
close(door).// external action

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 118

2 Jason
2.2 Jason – Origins and Fundamentals

Example 2.11 (Plans)
+green_patch(Rock)[source(percept)]

: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 119

2 Jason
2.2 Jason – Origins and Fundamentals

Strong Negation

Example 2.12
+!leave(home)

: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 120

~
~

2 Jason
2.3 Reasoning

2.3 Reasoning

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 121

2 Jason
2.3 Reasoning

Syntax

Note
The Jason-documentation (doc/Jason.pdf) contains a
precise definition of the syntax.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 122

2 Jason
2.3 Reasoning

Semantics

Question
Now, we know the components (syntax) of agent
programs. But how does the interpreter work?

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 123

2 Jason
2.3 Reasoning

Reasoning Cycle

How does the Jason interpreter run an agent program?
Jason-program = initial beliefs + initial goals + plan
library

beliefs initialize the belief-base and generate
belief-addition events,
goals initialize the goal-base and generate
goal-addition-events.

 initial set of events
reasoning cycle has 10 main steps

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 124

2 Jason
2.3 Reasoning

Ten Steps
1 Perceiving the environment,
2 updating the belief-base,
3 receiving communication from other agents,
4 selecting socially acceptable messages,
5 selecting an event,
6 retrieving all relevant plans,
7 determining the applicable plans,
8 selecting one applicable plan,
9 selecting an intention, and

10 executing one step of an intention.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 125

2 Jason
2.3 Reasoning

Step 1: Perceiving the Environment

Sensing the environment in order to update the
belief-base,
percepts = list of literals (symbolic representation of a
particular property of the current state of the
environment),
perceive-method default-implementation: retrieve a
list of literals of an environment implemented in Java,
advanced: perceive needs to interface with real world
sensors.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 126

2 Jason
2.3 Reasoning

Step 2: Updating the Belief-Base

Belief update function,
assumption: everything that is currently perceivable
will be included in the list of percepts,
belief update default-implementation:

1 Each percept that is not currently in the belief-base is
added to the belief-base,

2 each belief that is no longer in the percept list is
removed from the belief-base,

each change generates an event.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 127

2 Jason
2.3 Reasoning

Step 3: Receiving Communication

The interpreter checks the agent’s mailbox,
checkmail default implementation: process the
messages in the order they were received,
only the first message is moved to the belief-base.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 128

2 Jason
2.3 Reasoning

Step 4: Socially Acceptable Messages

Socially acceptance function: will normally need
customization, possibly for each individual agent,
default-implementation: accept all messages from all
agents,
advanced: cognitive reasoning about how to handle
messages should be implemented in the
Jason-program.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 129

2 Jason
2.3 Reasoning

Step 5: Selecting an Event

Practical BDI agents continually handle events,
items are either perceived changes in the environment
or changes in the agent’s own goals,
in each cycle only one pending event will be dealt with,
event selection function per default selects the first
event from the event-queue (FIFO),
priorities can be implemented via a customized
method.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 130

2 Jason
2.3 Reasoning

Step 6: Retrieving all Relevant Plans

Determine all plans that are relevant to the selected
event,
relevant plan = its triggering-event can be unified with
the selected event.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 131

2 Jason
2.3 Reasoning

Unification Example

Event:
+colour(box1,blue)[source(percept)].

Plans:
@p1 +position(Object,Coords) : ...
@p2 +colour(Object,Colour) : ...
@p3 +colour(Object,Colour) : ...
@p4 +colour(Object,red) : ...
@p5 +colour(Object,Colour)[source(self)] : ...
@p6 +colour(Object,blue)[source(percept)] : ...

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 132

2 Jason
2.3 Reasoning

Step 7: Determining Applicable Plans

Applicable plans are plans that have a good chance in
succeeding given the agent’s beliefs and know-how,
applicable plan = plan that is relevant + plan’s context
is a logical consequence of the belief-base.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 133

2 Jason
2.3 Reasoning

Example 2.13 (Beliefs)

shape(box1,box).
pos(box1,coord(9,9)).
colour(box1,blue).

shape(sphere2,sphere).
pos(sphere2,coord(7,7)).
colour(sphere2,red).

Example 2.14 (Plans)
@p1 +colour(Object,Colour) : shape(Object,box) & not
pos(Object,coord(0,0)) <-

@p2 +colour(Object,Colour): shape(Object,box) &
colour(Object,red) <-

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 134

2 Jason
2.3 Reasoning

Step 8: Selecting One Applicable Plan

Assumption: Any applicable plan will hopefully suffice
for dealing with the particular selected event,
applicable plan selection function: the pre-defined
function selects the plan determined by the order the
plans appear in the plan-library,
an instance of the plan (with variable-substitutions)
becomes an intention, the plan-library is not changed.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 135

2 Jason
2.3 Reasoning

Step 9: Selecting an Intention

An agent usually has a set of intentions, each
representing a different focus of attention – all
intentions are competing for the agent’s attention,
intention selection function default implementation:
round-robin scheduler divides attention equally among
all intentions.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 136

2 Jason
2.3 Reasoning

Step 10: Executing One Step
A plan is a sequence of formulæ
f1 ; f2 ; ... ; fn .
There are different kinds of formulæ:

environment actions: Affect the environment, e.g.
close(door),
achievement goals: Add a new goal, potentially
suspend the intention, e.g. !g1, or !!g2,
test goals: Check if a certain property is currently
believed, e.g. ?b(X),
mental notes: Update the belief base, e.g. +b1(X),
-b2(X), -+b3(X),
internal actions: Execute Java-code, e.g.
pathlib.shortestPath(...),
expressions: Evaluated in the usual way, e.g. X > 10.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 137

2 Jason
2.3 Reasoning

Jason reasoning cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 138

2 Jason
2.4 Comparison

2.4 Comparison

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 139

2 Jason
2.4 Comparison

Jason × Java I
Consider a very simple robot with two goals:

When a piece of gold is seen, go for it,
when battery is low, charge it.

Example 2.15 (Java Code – Go to Gold)
public class Robot extends Thread {

boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {}
while (seeGold) {

a = selectDirection();
doAction(go(a));

} } } }

(How to code the charge battery behaviour?)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 140

2 Jason
2.4 Comparison

Jason × Java II

Example 2.16 (Java Code – Charge Battery)
public class Robot extends Thread {

boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold)

if (lowBattery) charge();
while (seeGold) {

a = selectDirection ();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }

(Note where the test for low battery have to be done!)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 141

2 Jason
2.4 Comparison

Jason × Java III

Example 2.17 (Jason Code)
+see(gold)

<- !goto(gold).
+!goto(gold) : see(gold)

<- !select_direction(A);
go(A);
!goto(gold).

+battery(low)
<- .suspend(goto(gold));

!charge;
.resume(goto(gold)).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 142

2 Jason
2.4 Comparison

Jason × Prolog

With the Jason extensions, nice separation of theoretical
and practical reasoning.

BDI architecture allows
long-term goals (goal-based behaviour),
reacting to changes in a dynamic environment,
handling multiple foci of attention (concurrency).

Acting on an environment and a higher-level
conception of a distributed system.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 143

2 Jason
2.5 Advanced Features

2.5 Advanced Features

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 144

2 Jason
2.5 Advanced Features

Plan Failure
Several reasons for plan failure:

Lack of relevant or applicable plans for an achievement
goal: Agent does not know how to achieve something
desired. A subgoal cannot be achieved.
Failure of a test goal: Represents a situation where the
agent is expected to believe that a certain property is
true, but it was not. First try to get the information from
the belief-base, than try to acquire it by instantiating a
plan. If both fail then the plan fails.
Action failure: Internal actions and external actions can
fail.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 145

2 Jason
2.5 Advanced Features

What Happens When a Plan Fails?
Regardless of the reason for plan failing, the interpreter
generates a goal deletion event.
Plans for goal deletion events = clean-up plans.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 146

2 Jason
2.5 Advanced Features

Example 2.18 (Plan Failure)
!g1. // initial goal
@p1 +!g1 : true <- !g2(X); .print(”end g1 ”,X) .
@p2 +!g2(X) : true <- !g3(X); .print(”end g2 ”,X) .
@p3 +!g3(X) : true <- !g4(X); .print(”end g3 ”,X) .
@p4 +!g4(X) : true <- !g5(X); .print(”end g4 ”,X) .
@p5 +!g5(X) : true <- .fail .
@f1 -!g3(failure) : true <- .print(”in g3 failure”)
.

Output:

[a] saying: in g3 failure
[a] saying: end g2 failure
[a] saying: end g1 failure

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 147

2 Jason
2.5 Advanced Features

Internal Actions
Unlike actions, internal actions do not change the
environment.
Code to be executed as part of the agent reasoning
cycle.
AgentSpeak is meant as a high-level language for the
agent’s practical reasoning and internal actions can be
used for invoking legacy code elegantly.

Internal actions can be defined by the user in Java

libname.action_name(. . .)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 148

2 Jason
2.5 Advanced Features

Standard Internal Actions
Standard (pre-defined) internal actions have an empty
library name

.print(term1, term2, . . .)

.union(list1, list2, list3)

.my_name(var)

.send(ag,perf,literal)

.intend(literal)

.drop_intention(literal)

Many others available for: printing, sorting, list/string
operations, manipulating the beliefs/annotations/plan
library, creating agents, waiting/generating events, etc.
 documentation.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 149

2 Jason
2.5 Advanced Features

Possible Customisations in Jason
Agent class customisation:
selectMessage, selectEvent, selectOption,
selectIntetion, buf, brf, ...

Agent architecture customisation:
Perceive, act, sendMsg, checkMail, ...

Belief base customisation:
Add, remove, contains, ...

Example: Persistent belief base
(in text files, in data bases,)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 150

2 Jason
2.5 Advanced Features

Communication Infrastructure
Different communication and execution management
infrastructures can be used with Jason:
Centralised: All agents in the same machine,

one thread by agent, very fast.
Centralised (pool): All agents in the same machine,

fixed number of thread,
allows thousands of agents.

Jade: Distributed agents, FIPA-ACL.
Saci: Distributed agents, KQML.

.... Others defined by the user (e.g. AgentScape)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 151

2 Jason
2.5 Advanced Features

Definition of a Simulated Environment

Normally, there will be an environment where the
agents are situated.
The agent architecture needs to be customised to get
perceptions and act on such environment.
We often want a simulated environment (e.g. to test a
MAS application).
This is done in Java by extending Jason’s Environment
class.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 152

2 Jason
2.5 Advanced Features

Interplay with Environment Simulator
Environment

Simulator
Agent

Architecture

executeAction

getPercepts

change
percepts

Reasoner

perceive

act

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 153

2 Jason
2.5 Advanced Features

Example of an Environment Class
1 import jason.*;
2 import ...;
3 public class robotEnv extends Environment {
4
5 public robotEnv() {
6 Literal gp =
7 Literal.parseLiteral("green_patch(souffle)");
8 addPercept(gp);
9 }

10
11 public boolean executeAction(String ag, Structure action) {
12 if (action.equals(...)) {
13 addPercept(ag,
14 Literal.parseLiteral("location(souffle,c(3,4))");
15 }
16 ...
17 return true;
18 } }

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 154

3 Jason Logic Programming

3. Jason Logic Programming
3 Jason Logic Programming

Biblical Research
Arithmetics
Lists

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 155

3 Jason Logic Programming

Content of this Chapter:
We explain how you can program the belief-base of a
Jason-agent by means of logic programming. We

1 show how you can define and make use of facts and
rules,

2 how you can employ recursion in order to implement
complex functions, and

3 elaborate on lists, which is a useful data-structure.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 156

3 Jason Logic Programming

Remember

Jason is based on logic programming.
Belief-base: facts + rules.
Queries in Jason: Contexts of plans and test-goals.
+!start : father(abraham,issac) <-

?male(abraham).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 157

3 Jason Logic Programming

Now

Short Introduction to Logic Programming
Biblical Research,
arithmetics
lists.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 158

3 Jason Logic Programming
3.1 Biblical Research

3.1 Biblical Research

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 159

3 Jason Logic Programming
3.1 Biblical Research

Some Facts

father(terach,abraham).
father(terach,nachor).
father(terach,haran).
father(abraham,isaac).
father(haran,lot).
father(haran,milcah).
father(haran,yiscah).

mother(sarah,isaac).

male(terach).
male(abraham).
male(nachor).
male(haran).
male(isaac).
male(lot).

female(sarah).
female(milcah).
female(yiscah).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 160

3 Jason Logic Programming
3.1 Biblical Research

How to Define “son” and “daughter”?

son(X,Y) means X is a son of Y. daughter(X,Y) means X is a
daughter of Y.

son(X,Y) :- father(Y,X) & male(X).
son(X,Y) :- mother(Y,X) & male(X).
daughter(X,Y) :- father(Y,X) & female(X).
daughter(X,Y) :- mother(Y,X) & female(X).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 161

3 Jason Logic Programming
3.1 Biblical Research

How to Define “grandparent”?
grandparent(X,Y) means X is a grandparent of Y.

Solution 1:
grandparent(X,Y) :- father(X,Z) & father(Z,Y).
grandparent(X,Y) :- father(X,Z) & mother(Z,Y).
grandparent(X,Y) :- mother(X,Z) & father(Z,Y).
grandparent(X,Y) :- mother(X,Z) & mother(Z,Y).

Solution 2:
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
grandparent(X,Y) :- parent(X,Z) & parent(Z,Y).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 162

3 Jason Logic Programming
3.1 Biblical Research

Giving More Meaning to the Variables

parent(Parent,Child) :- father(Parent,Child).
parent(Parent,Child) :- mother(Parent,Child).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 163

3 Jason Logic Programming
3.1 Biblical Research

More Examples

procreated(Man,Woman) :- father(Man,Child) &
mother(Woman,Child).

sibling(Sib1,Sib2) :- parent(Parent,Sib1) &
parent(Parent,Sib2).

 Problem!
sibling(Sib1,Sib2) :- parent(Parent,Sib1) &

parent(Parent,Sib2) &
Sib1 \== Sib2.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 164

3 Jason Logic Programming
3.1 Biblical Research

Even More Examples

cousin(Cousin1,Cousin2) :- parent(Parent1,Cousin1) &
parent(Parent2,Cousin2) &
sibling(Parent1,Parent2).

uncle(Uncle,Person) :- brother(Uncle,Parent) &
parent(Parent,Person).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 165

3 Jason Logic Programming
3.1 Biblical Research

How to Define “ancestor”?

Approach 1:

grandparent(Ancestor,Descendant) :-
parent(Ancestor,Person) &
parent(Person,Descendant).

greatgrandparent(Ancestor,Descendant) :-
parent(Ancestor,Person) &
grandparent(Person,Descendant).

greatgreatgrandparent(Ancestor,Descendant) :-
parent(Ancestor,Person) &
greatgrandparent(Person,Descendant).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 166

3 Jason Logic Programming
3.1 Biblical Research

How to Define “ancestor”?

Approach 2 (more elegant using recursion):

ancestor(Ancestor,Descendant) :-
parent(Ancestor,Descendant).

ancestor(Ancestor,Descendant) :-
parent(Ancestor,Person) &
ancestor(Person,Descendant).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 167

3 Jason Logic Programming
3.2 Arithmetics

3.2 Arithmetics

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 168

3 Jason Logic Programming
3.2 Arithmetics

Representing N with Terms

Using a single constant 0 and the successor-function s

Natural number Term representation
0 0
1 s(0)
2 s(s(0))
3 s(s(s(0)))
4 s(s(s(s(0))))
.
n sn(0)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 169

3 Jason Logic Programming
3.2 Arithmetics

Checking

Question
How can we determine whether an arbitrary term is a
natural number or not?

natural_number(0).
natural_number(s(X)) :- natural_number(X).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 170

3 Jason Logic Programming
3.2 Arithmetics

How to Add Natural Numbers?
plus(X,Y,Z), where Z is the sum of X and Y.

plus(0,X,X) :- natural_number(X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

The definition is not unique:

plus(0,X,X) :- natural_number(X).
plus(X,s(Y),s(Z)) :- plus(X,Y,Z).

works fine, too.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 171

3 Jason Logic Programming
3.2 Arithmetics

How Can this be Used?
Is the sum correct?

?plus(s(0),s(0),s(s(0))) true

What is the sum of two numbers?

?plus(s(0),s(0),Z) Z is s(s(0))

What is the difference of two numbers?

?plus(s(0),Y,s(s(0))) Y is s(0)

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 172

3 Jason Logic Programming
3.2 Arithmetics

How to Multiply Natural Numbers?

times(X,Y,Z), where Z is the product of X and Y.

Multiplication as repeated addition:

times(0,X,0) :- natural_number(X).
times(s(X),Y,Z) :- times(X,Y,XY) &

plus(XY,Y,Z).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 173

3 Jason Logic Programming
3.2 Arithmetics

Do You Do Maths Like this in Jason?
Fortunately not: arithmetics is implemented on a level
underneath the logic programming level (system
predicates).

Is the sum correct?

1 + 1 = 2 true

What is the sum of two numbers?

1 + 1 = Z Z is 2

What is the difference of two numbers?

Y = 2 - 1 Y is 1

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 174

3 Jason Logic Programming
3.3 Lists

3.3 Lists

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 175

3 Jason Logic Programming
3.3 Lists

What are Lists?

special and useful terms
can be used to define complex data-structures (arrays,
tables, tensors, trees, ...)

Examples:
[] the empty-list
[a] a list with one element

[1,2,3,4] a couple of entries
[[1,2,3],[4,5,6],[7,8,9]] a matrix

[node(0,0),node(0,1),node(1,1)] a path

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 176

3 Jason Logic Programming
3.3 Lists

List Operator

There is a list operator that separates a list’s head from its
tail. Example:

[a,b,c] = [H|T]

will yield this substitution
H -> a
T -> [b,c]

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 177

3 Jason Logic Programming
3.3 Lists

Examples

Printing the head of a list:

!printHead([a,b,c]).
+!printHead([H|T]) : true <- .print(H).

yields

[agent] a

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 178

3 Jason Logic Programming
3.3 Lists

Examples

Printing the tail of a list:

!printTail([a,b,c]).
+!printTail([H|T]) : true <- .print(T).

yields

[agent] [b,c]

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 179

3 Jason Logic Programming
3.3 Lists

Examples
Printing a list recursively:

!printHeadRec([a,b,c]).
+!printHeadRec([H|T]) : true <-

.print(H);
!printHeadRec(T).

+!printHeadRec([]).

yields

[agent] a
[agent] b
[agent] c

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 180

3 Jason Logic Programming
3.3 Lists

Testing for Membership

member(X,List) is true iff X is a member of List

member(X,[X,List]).
member(X,[HT]) :- member(X,T).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 181

3 Jason Logic Programming
3.3 Lists

Appending Two Lists

append(X,Y,Z) is true iff Z is the concatenation of X and Y.
E.g. append([a,b],[c,d],[a,b,c,d]).

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :-
append(Xs,Ys,Zs).

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 182

3 Jason Logic Programming
3.3 Lists

Built-in Internal Actions
.concat(X,Y,Z) appends two lists
.member(X,List) checks if an element is a member of a list
.length(List,L) yields the length of a list
.delete(X,List,NewList) deletes an lement from a list
.reverse(List,NewList) reverses a list
.nth(N,List,X) yields the n-th element of a list
.union(S1,S2,NewSet) yields the union of two sets
.intersection(S1,S2,NewSet) yields the intersection of

two sets
...

 more in the documentation

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2010 183

	Introduction
	Jason
	Jason Logic Programming

