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About this lecture
This course gives a first introduction to multi-agent
systems for Bachelor students. Emphasis is put on
applications and programming MAS, not on theory. After
some general introduction of agent systems, we consider
one programming language together with a platform for
developing agents: 2APL. Students are grouped into
teams and implement agent teams for solving a task on
our agent contest platform. These teams fight against each
other. The winning team will be determined in a
competition and get a price.

My thanks go to Tristan Behrens, Michael Köster and our
students who prepared the lab work and also some of the
slides of this course. In addition, Mehdi Dastani provided
me with some slides.
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Lecture Overview

1. Week: Chapter 1, Introduction
2. Week: Chapter 2, Basic Notions
3. Week: Chapter 3, Scenarios +

Chapter 4, 2APL
4. Week: Chapter 4, 2APL
4.-14. Week: Labs.
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1. Introduction

Chapter 1. Introduction

Introduction
1.1 Why Agents?
1.2 Intelligent Agents
1.3 Formal Description
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1. Introduction

Content of this chapter:

We are setting the stage for a precise discussion
of agency. From informal concepts to (more or
less) mathematical definitions.

1 MAS versus Distributed AI (DAI),
2 Environment of agents,
3 Agents and other frameworks,
4 Runs as characteristic behaviour,
5 state-based versus standard agents.
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1. Introduction 1. Why Agents?

1.1 Why Agents?
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1. Introduction 1. Why Agents?

Three Important Questions

(Q1) What is a (software) agent?
(Q2) If some program P is not an agent,

how can it be transformed into an agent?
(Q3) If (Q1) is clear, what kind of Software

Infrastructure is needed for the
interaction of agents? What services
are necessary?

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 9/233

1. Introduction 1. Why Agents?

Definition 1.1 (Distributed Artificial Intelligence (DAI))

The area investigating systems, where several
autonomous acting entities work together to reach
a given goal.

The entities are called Agents, the area Multiagent
Systems.

AAMAS: several conferences joined in 2002 to
form the main annual event. Bologna (2002),
Melbourne (2003), New York (2004), Utrecht
(2005), Hakodate (2006), Hawaii (2007), Lisbon
(2008), Budapest (2009).
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1. Introduction 1. Why Agents?

Example 1.2 (RoboCup)

Figure 1: 2D-Simulation league: RoboCup 2007 Final
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1. Introduction 1. Why Agents?

Example 1.3 (RoboCup)

Figure 2: 3D-Simulation league: RoboCup 2007 Final
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1. Introduction 1. Why Agents?

Example 1.4 (RoboCup)

Figure 3: Small size league
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1. Introduction 1. Why Agents?

Example 1.5 (RoboCup)

Figure 4: Middle size league
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1. Introduction 1. Why Agents?

Example 1.6 (RoboCup)

Figure 5: Standard platform
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1. Introduction 1. Why Agents?

Example 1.7 (RoboCup)

Figure 6: Humanoid league
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1. Introduction 1. Why Agents?

Example 1.8 (RoboCup)

Figure 7: Rescue league
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1. Introduction 1. Why Agents?

Example 1.9 (Grand Challenge 2004 (1))
Grand Challenge: Organised by DARPA since 2004.
First try: Huge Failure.

Figure 8: Grand Challenge 2004

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 18/233

1. Introduction 1. Why Agents?

Example 1.10 (Grand Challenge 2004 (2))
Prize money: 1 million Dollars
Race course: 241 km in the Mojave desert
10 hours pure driving time
More than 100 registered participants, 15 of them
were chosen
No one reached the end of the course
The favourite “Sandstorm” of Carnegie Mellon in
Pittsburgh managed 5% of the distance
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1. Introduction 1. Why Agents?

Example 1.11 (Grand Challenge 2005 (1))
Second try: Big Success:
Stanley (Sebastian Thrun) won in 2005.

Figure 9: VW Touareg coached by Stanford University
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1. Introduction 1. Why Agents?

Example 1.12 (Grand Challenge 2005 (2))
Prize money: 2 million Dollars
Race course: 212,76 km in the Mojave desert
10 hours pure driving time
195 registered participants, 23 were qualified
5 teams reached the end of the course (4 teams in
time)
Stanley finished the race in 6 hours and 53 minutes
(30,7 km/h)
Sandstorm achieved the second place
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1. Introduction 1. Why Agents?

Example 1.13 (Urban Challenge (1))
Urban Challenge: Organised by DARPA since 2007.

Figure 10: Urban Challenge 2007
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1. Introduction 1. Why Agents?

Example 1.14 (Urban Challenge (2))
No straight-line course but real streets covered with
buildings.
60 miles
Prize money: 3,5 million Dollars
Tartan Racing won, Stanford Racing Team second,
VictorTango third place.
Some teams like Stanford Racing Team and
VictorTango as well as Tartan Racing were sponsored
by DARPA with 1 million Dollar beforehand.
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1. Introduction 1. Why Agents?

Example 1.15 (CLIMA Contest: Gold Mining (1))
First try: A simple grid where agents are supposed to
collect gold. Different roles of agents: scouts, collectors.

Old site:
http://cig.in.tu-clausthal.de/agentcontest2008
New site: http://multiagentcontest.org

7
$

3

$
Figure 11: Gold mining elements
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1. Introduction 1. Why Agents?

Example 1.16 (CLIMA Contest: Gold Mining (2))

Figure 12: Gold Mining 2006: CLIMABot (blue) vs. brazil (red)
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1. Introduction 1. Why Agents?

Example 1.17 (Agent Contest: Chasing Cows (1))
Second try: Push cows in a corral.

Old site:
http://cig.in.tu-clausthal.de/agentcontest2008
New site: http://multiagentcontest.org

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 26/233

1. Introduction 1. Why Agents?

Example 1.18 (Agent Contest: Chasing Cows (2))

Figure 13: Chasing Cows 2008
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1. Introduction 1. Why Agents?

Why do we need them?

Information systems are distributed, open,
heterogenous.
We therefore need intelligent, interactive agents,
that act autonomously.

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 28/233

http://cig.in.tu-clausthal.de/agentcontest2008
http://multiagentcontest.org


1. Introduction 1. Why Agents?

(Software) Agent: Programs that are implemented on a
platform and have sensors and effectors to
read from and make changes to the
environment, respectively.

Intelligent: Performance measures, to evaluate the
success. Rational vs. omniscient, decision
making

Interactive: with other agents (software or humans) by
observing the environment.
Coordination: Cooperation vs. Competition
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1. Introduction 1. Why Agents?

MAS versus Classical DAI

MAS: Several Agents coordinate their
knowledge and actions (semantics
describes this).

DAI: Particular problem is divided into
smaller problems (nodes). These
nodes have common knowledge. The
solution method is given.

Attention:

Today DAI is used synonymously with MAS.
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1. Introduction 1. Why Agents?

AI DAI
Agent Multiple Agents
Intelligence: Intelligence:
Property of a Property of
single Agent several Agents
Cognitive Processes Social Processes
of a single Agent of several Agents
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1. Introduction 1. Why Agents?

10 Desiderata

1. Agents are for everyone! We need a method to
agentise given programs.

2. Take into account that data is stored in a wide
variety of data structures, and data is
manipulated by an existing corpus of
algorithms.

3. A theory of agents must not depend upon
the set of actions that the agent performs.
Rather, the set of actions that the agent
performs must be a parameter that is taken
into account in the semantics.
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1. Introduction 1. Why Agents?

10 Desiderata

4. Every (software) agent should execute
actions based on some clearly articulated
decision policy. A declarative framework for
articulating decision policies of agents is
imperative.

5. Any agent construction framework must
allow agents to reason:

Reasoning about its beliefs about other agents.
Reasoning about uncertainty in its beliefs about the world and
about its beliefs about other agents.
Reasoning about time.

These capabilities should be viewed as
extensions to a core agent action language.
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1. Introduction 1. Why Agents?

10 Desiderata

6. Any infrastructure to support multiagent
interactions must provide security.

7. While the efficiency of the code underlying a
software agent cannot be guaranteed (as it
will vary from one application to another),
guarantees are needed that provide
information on the performance of an agent
relative to an oracle that supports calls to
underlying software code.
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1. Introduction 1. Why Agents?

10 Desiderata

8. We must identify efficiently computable
fragments of the general hierarchy of
languages alluded to above, and our
implementations must take advantage of the
specific structure of such language
fragments.

9. A critical point is reliability—there is no point
in a highly efficient implementation, if all
agents deployed in the implementation come
to a grinding halt when the agent
“infrastructure” crashes.
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1. Introduction 1. Why Agents?

10 Desiderata

10. The only way of testing the applicability of
any theory is to build a software system based
on the theory, to deploy a set of applications
based on the theory, and to report on
experiments based on those applications.
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1. Introduction 2. Intelligent Agents

1.2 Intelligent Agents
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1. Introduction 2. Intelligent Agents

Definition 1.19 (Agent aaa)

An agent aaa is anything that can be viewed as
perceiving its environment through sensor and
acting upon that environment through
effectors.

?

agent

percepts

sensors

actions

effectors

environment
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1. Introduction 2. Intelligent Agents

Definition 1.20 (Rational Agent, Omniscient Agent)

A rational agent is one that does the right thing
(Performance measure determines how
successful an agent is).

A omniscient agent knows the actual outcome of
his actions and can act accordingly.

Attention:

A rational agent is in general not omniscient!
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1. Introduction 2. Intelligent Agents

Question

What is the right thing and what does it depend
on?

1 Performance measure (as objective as possible).
2 Percept sequence (everything the agent has received so

far).
3 The agent’s knowledge about the environment.
4 How the agent can act.
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1. Introduction 2. Intelligent Agents

Definition 1.21 (Ideal Rational Agent)

For each possible percept-sequence an ideal
rational agent should do whatever action is
expected to maximize its performance measure
(based on the evidence provided by the percepts
and built-in knowledge).
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1. Introduction 2. Intelligent Agents

Mappings:

set of percept sequences 7→ set of actions

can be used to describe agents in a
mathematical way.

Hint:

Internally an agent is

agent = architecture + program

AI is engaged in designing agent programs
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1. Introduction 2. Intelligent Agents

Agent Type Perform. Measure Environment Actuators Sensors
Medical diagnosis Healthy patient, Patient, hospital,Display questions, tests, Entry of symptoms,

system minimize costs staff diagnoses, treatments findings, patient’s answers
Satellite image Correct image Downlink from Display categorization Color pixel
analysis system categorization orbiting satellite of scene arrays

Part-picking Percentage of parts Conveyor belt Jointed arm Camera, joint
robot in correct bins with parts; bins and hand angle sensors

Interactive Maximize student’s Set of students, Display exercises, Keyboard entry
English tutor score on test testing agency suggestions, corrections

Table 1: Examples of agents types and their PEAS descriptions.
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1. Introduction 2. Intelligent Agents

Question:
How do environment properties influence agent design?

Definition 1.22 (Properties of the Environment)
Accessible/Inaccessible: If not completely accessible, one needs

internal states.
Deterministic/Indeterministic: An inaccessible environment might

seem indeterministic, even if it is not.
Episodic/Nonepisodic: Percept-Action-Sequences are independent

from each other. Closed episodes.
Static/Dynamic: While the agent is thinking, the world is the

same/changing. Semi-dynamic: The world does not
change, but the performance measure.

Discrete/Continous: Density of observations and actions. Relevant:
Level of granularity.
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1. Introduction 2. Intelligent Agents

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes
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1. Introduction 2. Intelligent Agents

xbiff, software demons are agents (not intelligent).

Definition 1.23 (Intelligent Agent)
An intelligent agent is an agent with the following
properties:

1 Autonomous: Operates without direct intervention of
others, has some kind of control over its actions and
internal state.

2 Reactive: Reaction to changes in the environment at
certain times to reach its goals.

3 Pro-active: Taking the initiative, being goal-directed.
4 Social: Interaction with others to reach the goals.
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1. Introduction 2. Intelligent Agents

Pro-active alone is not sufficient
(C-Programs): The environment can change
during execution.

Socialisation: coordination, communication,
(negotiation) skills.

Difficulty: right balance between pro-active and
reactive!
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1. Introduction 2. Intelligent Agents

Agents vs. Object Orientation

Objects have
1 a state (encapsulated): control over internal

state
2 message passing capabilities

Java: private and public methods.

Objects have control over their state, but not
over their behaviour.
An object can not prevent others to use its
public methods.
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1. Introduction 2. Intelligent Agents

Agents call other agents and request them to
execute actions.

Objects do it for free, agents do it for money.
No analoga to reactive, pro-active, social in
OO.
MAS are multi-threaded or even
multi-processed: each agent has a control
thread or is a new process. (In OO only the
system as a whole possesses one.)
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1. Introduction 2. Intelligent Agents

A simple agent program:
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1. Introduction 2. Intelligent Agents

In theory everything is trivial:
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1. Introduction 2. Intelligent Agents

An agent example – taxi driver:

Agent Type Perform. Measure Environment Actuators Sensors
Taxi driver Safe, fast, legal, Roads, other traffic, Steering, accelerator, Cameras, sonar, GPS

maximize profits pedestrians, customers brake, signal, horn odometer, engine sensors

Table 2: PEAS description of the task environment for an automated taxi
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1. Introduction 2. Intelligent Agents

Some examples:
1 Production rules: If the driver in front hits

the breaks, then hit the breaks too.
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1. Introduction 2. Intelligent Agents

Agents as Intentional Systems

Intentions: Agents are endowed with mental
states.
Matthias took his umbrella because he believed
it was going to rain.
Kjeld attended the MAS course because he
wanted to learn about agents.

An intentional system describes entities whose
behaviour can be predicted by the method of
attributing beliefs, desires and rational acumen.
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1. Introduction 3. Formal Description

1.3 Formal Description
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1. Introduction 3. Formal Description

A first mathematical description

At first, we want to keep everything as simple as
possible.
Agents and environments

An agent is situated in an environment and can
perform actions

A := {a1, . . . , an} (set of actions)

and change the state of the environment

S := {s1, s2, . . . , sn} (set of states).
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1. Introduction 3. Formal Description

How does the environment (the state s) develop when an
action a is executed?

We describe this with a function

env : S×A −→ 2S.

This includes non-deterministic environments.
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1. Introduction 3. Formal Description

How do we describe agents?

We could take a function action : S −→ A.

Agent

E
n

viro
n

m
en

t
Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1. Introduction 3. Formal Description

Question:

How can we describe an agent, now?

Definition 1.24 (Purely Reactive Agent)

An agent is called purely reactive, if its function is
given by

action : S −→ A.
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1. Introduction 3. Formal Description

This is too weak!

Take the whole history (of the environment) into
account: s0 →a0

s1 →a1
. . . sn →an

. . ..

The same should be done for env!
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1. Introduction 3. Formal Description

This leads to agents that take the whole
sequence of states into account, i.e.

action : S∗ −→ A.

We also want to consider the actions performed
by an agent. This requires the notion of a run
(next slide).
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1. Introduction 3. Formal Description

We define the run of an agent in an environment
as a sequence of interleaved states and actions:
Definition 1.25 (Run r, R = Ract ∪ Rstate)

A run r over A and S is a finite sequence

r : s0 →a0
s1 →a1

. . . sn →an
. . .

Such a sequence may end with a state sn or with
an action an: we denote by Ract the set of runs
ending with an action and by Rstate the set of
runs ending with a state.
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1. Introduction 3. Formal Description

Definition 1.26 (Environment, 2. version)

An environment Env is a triple 〈S, s0, τττ〉
consisting of

1 the set S of states,
2 the initial state s0 ∈ S,
3 a function τττ : Ract −→ 2S, which describes

how the environment changes when an
action is performed (given the whole history).
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1. Introduction 3. Formal Description

Definition 1.27 (Agent aaa)

An agent aaa is determined by a function

action : Rstate −→ A,

describing which action the agent performs,
given its current history.

Important:

An agent system is then a pair aaa = 〈action, Env〉
consisting of an agent and an environment.
We denote by R(aaa, Env) the set of runs of agent aaa

in environment Env.
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1. Introduction 3. Formal Description

Definition 1.28 (Characteristic Behaviour)

The characteristic behaviour of an agent aaa in an
environment Env is the set R of all possible runs
r : s0 →a0

s1 →a1
. . . sn →an

. . . with:
1 for all n: an = action(〈s0, a0 . . . , an−1, sn〉),
2 for all n > 0:

sn ∈ τττ(s0, a0, s1, a1, . . . , sn−1, an−1).

For deterministic τττ , the relation “∈” can be
replaced by “=”.
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1. Introduction 3. Formal Description

Important:

The formalization of the characteristic behaviour
is dependent of the concrete agent type. Later
we will introduce further behaviours (and
corresponding agent designs).
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1. Introduction 3. Formal Description

Equivalence

Two agents aaa, bbb are called behaviourally
equivalent wrt. environment Env, if
R(aaa, Env) = R(bbb, Env).
Two agents aaa, bbb are called behaviourally
equivalent, if they are behaviourally equivalent
wrt. all possible environments Env.
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1. Introduction 3. Formal Description

So far so good, but...

What is the problem with all these agents and
this framework in general?

Problem

All agents have perfect information about the
environment!
(Of course, it can also be seen as feature!)
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1. Introduction 3. Formal Description

We need more realistic agents!

Note

In general, agents only have incomplete/uncertain
information about the environment!

We extend our framework by perceptions:
Definition 1.29 (Actions A, Percepts P, States S)

A := {a1, a2, . . . , an} is the set of actions.
P := {p1,p2, . . . ,pm} is the set of percepts.
S := {s1, s2, . . . , sl} is the set of states
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1. Introduction 3. Formal Description

Sensors don’t need to provide perfect
information!

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1. Introduction 3. Formal Description

Question:

How can agent programs be designed?

There are four types of agent programs:
Simple reflex agents
Agents that keep track of the world
Goal-based agents
Utility-based agents
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1. Introduction 3. Formal Description

First try

We consider a purely reactive agent and just
replace states by perceptions.

Definition 1.30 (Simple Reflex Agent)

An agent is called simple reflex agent, if its
function is given by

action : P −→ A.

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 72/233



1. Introduction 3. Formal Description

A very simple reflex agent
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1. Introduction 3. Formal Description

A simple reflex agent with memory

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 74/233

1. Introduction 3. Formal Description

As before, let us now consider sequences of
percepts:

Definition 1.31 (Standard Agent aaa)

A standard agent aaa is given by a function

action : P∗ −→ A

together with

see : S −→ P.

An agent is thus a pair 〈see, action〉.
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Definition 1.32 (Indistinguishable)

Two different states s, s′ are indistinguishable for
an agent aaa, if see(s) = see(s′).

The relation “indistinguishable” on S× S is an
equivalence relation.
What does | ∼ | = |S|mean?
And what | ∼ | = 1?
As mentioned before, the characteristic
behaviour has to match with the agent design!
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Definition 1.33 (Characteristic Behaviour)
The characteristic behaviour of a standard agent
〈see, action〉 in an environment Env is the set of all finite
sequences

p0 →a0 p1 →a1 . . .pn →an . . .

where

p0 = see(s0),
ai = action(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1).

Such a sequence, even if deterministic from the agent’s
viewpoint, may cover different environmental behaviours
(runs):
s0 →a0 s1 →a1 . . . sn →an . . .
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Instead of using the whole history, resp. P∗, one
can also use internal states
I := {i1, i2, . . . , in, in+1, . . .}.
Definition 1.34 (State-based Agent aaastate)

A state-based agent aaastate is given by a function
action : I −→ A together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is
observed.
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Definition 1.35 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent aaastate in
an environment Env is the set of all finite sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an−1 (in,pn), . . .

with

p0 = see(s0),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1),
an = action(in+1),
next(in,pn) = in+1.

Sequence covers the runs r : s0 →a0 s1 →a1 . . . where
aj = action(ij+1),
sj ∈ τττ(s0, a0, s1, a1, . . . , sj−1, aj−1),
pj = see(sj)
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Are state-based agents more expressive than
standard agents? How to measure?

Definition 1.36 (Environmental Behaviour of aaastate)

The environmental behaviour of an agent aaastate is
the set of possible runs covered by the
characteristic behaviour of the agent.
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Theorem 1.37 (Equivalence)

Standard agents and state-based agents are
equivalent with respect to their environmental
behaviour.
More precisely: For each state-based agent aaastate

and next storage function there exists a standard
agent aaa which has the same environmental
behaviour, and vice versa.
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3. Goal based agents:
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This leads to Planning.
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Chapter 2. Basic Notions

Basic Notions
2.1 Reactive Agents
2.2 BDI-Architecture
2.3 PROLOG
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2. Basic Notions

Content of this chapter:

In this chapter we present some important techniques that
will be used later for programming agents.

An architecture for reactive agents, based on a
subsumption.
The BDI/Agent oriented programming-, architecture.
While 2APL is not exactly based on this version of BDI,
it is very similar in spirit.
We introduce some PROLOG technology: terms, facts
and rules. These are the basic ingredients for writing
agents in the labs.
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2.1 Reactive Agents

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 86/233

2. Basic Notions 1. Reactive Agents

Idea:

Intelligent behaviour is Interaction of the agents
with their environment.

It emerges through splitting in simpler
interactions.
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Subsumption-Architectures:
Decision making is realized through
goal-directed behaviours: each behaviour
is an individual action.
nonsymbolic implementation.
Many behaviours can be applied
concurrently. How to select between them?
Implementation through
Subsumption-Hierarchies, Layers.
Upper layers represent abstract behaviour.
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Formal Model:

see: as up to now, but close relation between
observation and action: no transformation of the
input.
actionactionaction: Set of behaviors and inhibition relation.

Beh := {〈c, a〉 : c ⊆ P, a ∈ A}.
〈c, a〉 “fires” if
see(s) ∈ c (c stands for “condition”).
≺⊆ Agrules × Agrules

is called inhibition-relation, Agrules ⊆ Beh.
We require ≺ to be a total ordering.
b1≺b2 means: b1 inhibits b2,
b1 has priority over b2.
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Example 2.1 (Exploring a Planet)

A distant planet (asteroid) is assumed to contain
gold. Samples should be brought to a spaceship
landed on the planet. It is not known where the
gold is. Several autonomous vehicles are
available. Due to the topography of the planet
there is no connection between the vehicles.

The spaceship sends off radio signals: gradient
field.
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Low Level Behaviour:
(1) If detect an obstacle then change direction.

2. Layer:
(2) If Samples on board and at base then drop
off.
(3) If Samples on board and not at base then
follow gradient field.

3. Layer:
(4) If Samples found then pick them up.

4. Layer:
(5) If true then take a random walk.

With the following ordering
(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5).

Under which asumptions (on the distribution of the gold)
does this work perfectly?
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Vehicles can communicate indirectly with
each other:

they put off, and
pick up

radiactive samples that can be sensed.
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Low Level Behaviour:
(1) If detect an obstacle then change direction.

2. Layer:
(2) If Samples on board and at base then drop
off.
(3) If Samples on board and not at base then
drop off two radioactive crumbs and follow
gradient field.

3. Layer:
(4) If Samples found then pick them up.
(5) If radioactive crumbs found then take one
and follow the gradient field (away from the
spaceship).

4. Layer:
(6) If true then take a random walk.

With the ordering (1) ≺ (2) ≺ (3) ≺ (4) ≺ (5) ≺ (6).
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Pro: Simple, economic, efficient, robust, elegant.
Contra:

Without knowledge about the
environment agents need to know about
the own local environment.
Decisions only based on local information.
How about bringing in learning?
Relation between agents, environment and
behaviours is not clear.
Agents with ≤ 10 behaviours are doable.
But the more layers the more complicated
to understand what is going on.
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2.2 BDI-Architecture
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Belief, Desire, Intention.
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Three main questions:
Deliberation: How to deliberate?
Planning: Once committed to something, how

to reach the goal?
Replanning: What if during execution of the

plan, things are running out of control
and the original plan fails?
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Belief 1: Making money is important.
Belief 2: I like computing.
Desire 1: Graduate in Computer Science.
Desire 2 (Int.): Pass the BSc.
Desire 3: Graduate in time, marks are unimportant.
New Belief: Money is not so important after all.
New Belief: Working scientifically is fun.
Desire 4: Pursue an academic career.
Desire 5 (Int.): Make sure to graduate with honours.
Desire 6 (Int.): Study abroad.
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Intentions are the most important thing.
Beliefs and intentions generate desires.
Desires can be inconsistent with each other.
Intentions are recomputed based on the
current intentions, desires and beliefs.
Intentions should persist, normally.
Beliefs are constantly updated and thus
generate new desires.
From time to time intentions need to be
re-examined.
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Deliberation has been split into two
components:

1 Generate options (desires).
2 Filter the right intentions.

(B,D, I) where B ⊆ Bel, D ⊆ Des, I ⊆ Int

I can be represented as a stack (priorities are
available)
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An agent has commitments both to
end: the wishes to bring about,

means: the mechanism to achieve a certain
state of affairs.

 Means-end reasoning.

What is wrong with our current control loop?

It is overcommitted to both means and end.
No way to replan if something goes wrong.
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plan to achieve goal

planner

state of 
environmenttask

intention/
goal/

possible actions
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What is a plan, a planning algorithm?

Definition 2.2 (Plan)

A plan π is a list of primitive actions. They lead,
by applying them successively, from the initial
state to the goal state.

Still overcommitted to intentions!
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Still limited in the way the agent can reconsider
its intentions.
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But reconsidering intentions is costly.

Pro-active vs. reactive

Extreme: stubborn agents, unsure agents.

What is better? Depends on the environment.

Let γ the rate of world change.
1 γ small: stubbornness pays off.
2 γ big: unsureness pays off.

What to do?

Meta-level control
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2.3 PROLOG
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Prolog

Prolog = programmation en logique

is a logic programming language that is based on Horn
clauses and resolution. We also use negation as failure to
deal with incomplete information.
Programming constructs of Prolog that are important for
our course are:

terms,
facts (also called atoms), and
rules.

Other important notions are queries, and predefined
constructs like arithmetical expressions, and lists.
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Terms

Constants starting with a digit or a lower-case letter:
abraham, lot ,milcah, 1, 2, 3, . . .

Variables starting with an upper-case letter:
X, Y,List ,Family , . . .

(Compound) Terms f(t1, t2, . . . , tn) composed using
constants, variables and functors:

s(0), s(s(0)), f(c1, f(c1, f(s(0), c2))),
first_name_of (einstein), father_of (X), . . .

Ground Terms are terms without variables. They are
also called fully instantiated.
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Facts (Atoms)

They express that a relation holds between
objects: They can be true or not.

mother(sarah, isaac).
mother(lea, dina).
mother(sarah, ismael).
male(esau).
female(dina).

father(terach, abraham).
father(abraham, isaac).
father(abraham, ismael).
father(isaac, esau).
father(isaac, jakob).
father(jakob, dina).

father is also called a binary predicate.
Similarly, facts are sometimes called predicates.
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Facts (Atoms) (2)

father(Y, father(Y,X)) is meaningless and
not well-formed.
One could consider plus(X, Y ) as a binary
function.
Then plus(1, plus(1, 1)) would make sense
(and evaluate to something like 3, if this were
available in the language).
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Facts (Atoms) (3)

A belief base always consists of facts.
If a belief base does not contain a particular
atom, say father(isaac, terach), then we can
also say that “not father(isaac, terach)” is
true.
Such negated facts are also called negated
atoms. We use the notion literal, to denote an
atom or its negation.
Therefore a belief base is always consistent: It
can not contain any contradictory
information.
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Rules, Clauses (1)

To define new predicates:

son(X, Y ) : − father(Y,X),male(X).
daughter(X, Y ) : − parent(Y,X), female(X).
grandfather(X, Y ) : − father(X,Z),parent(Z, Y ).
grandmother(X, Y ) : − mother(X,Z),parent(Z, Y ).
parent(X, Y ) : − father(X, Y ).
parent(X, Y ) : − mother(X, Y ).
sibling(X, Y ) : − parent(Z,X),parent(Z, Y ).
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Rules, Clauses (2)

They are also used to state important properties
and relations between predicates:

male(Y ) : − father(Y,X).

female(Y ) : − mother(Y,X).
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Queries

Given a set of rules and some facts (in a belief base), it is
interesting to know whether something can be deduced
from that (see the Wumpus example).
We can ask queries: They can be true, they can fail, or, if
they contain variables, they can result in an instantiation of
the variables.

son(isaac, abraham)? true
plus(1, 1, 2)? true
daughter(X, lea)? true, X=dina
grandmother(X, esau)? true, X=sarah
siblings(esau, jakob)? true
mother(terach, Y )? false?
plus(1, 1, Y )? true, Y=2
plus(X,X, Y )? true, X=0, Y=0
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How to interpret the rules?

Example 2.3 (SLD-Resolution)

Let a program consist of the following rules

(1) p(X,Z) : − q(X, Y ),p(Y, Z)
(2) p(X,X).
(3) q(a, b).

The query Q we are interested in is “p(X, b)”.
I.e. we are looking for all instances (terms) t for X
such that p(t, b) follows from the program.
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← p(X, b)

← q(X, Y ), p(Y, b)

← p(b, b)

← q(b, u), p(u, b)
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Figure 14: A finite SLD-Tree
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Lists

We often use lists and consider [·] as a function
symbol, written in infix notation.

[] empty list
[a] list with one element
[a, b] list with two elements
[a, b, c] list with three elements
[a, [b, c]] list of lists
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Predicates for lists

We assume we have a list of built-in predicates:

member(a, [a, b, c]) membership
member(X, [a, b, c]) membership
prefix([a, b], [a, b, c]) prefix
suffix([b, c], [a, b, c]) suffix
sublist([b], [a, b, c]) sublist
append([a, b], [c, d], [a, b, c, d]) appending two lists

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 125/233

2. Basic Notions 3. PROLOG

Append

Suppose for a moment we do not have the
append predicate available.

How can we define it using rules?

append([], X,X) : −
append([X|Y ], Z, [X|T ]) : − append(Y, Z, T )
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Order of atoms

How can we define the reverse of a list?

Example 2.4 (Termination depends on the order)
Consider the following two programs:

(1) reverse([X|Y ], Z) : − append(U, [X], Z), reverse(Y, U)

(2) reverse([X|Y ], Z) : − reverse(Y, U),append(U, [X], Z)

together with the above definition for append
and the query “Q : reverse([a|X], [b, c, d, b])”.
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Order of atoms (cont.)

The first program (1) leads to:
Q1 : append(U, [a], [b, c, d, b]), reverse(X,U)

The second program (2) leads to:
Q2 : reverse(X,U), append(U, [a], [b, c, d, b])

We get different results using a naive
execution!
This problem has been solved: Just do not care
too much about the ordering!
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not: negation-as-failure (1)

not has a very special meaning.

reachable(X) : − edge(X, Y ), reachable(Y ).

edge(a, b).
edge(b, a).
edge(c, d).

out_of_reach(X) : − not reachable(X).

What about the query out_of_reach(c)?
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not: negation-as-failure (2)

Remember female(X),male(X). These
predicates exclude each other. How to express
this with rules?

female(X) : − not male(X).

male(X) : − not female(X).

This ensures that we always have male(c) or
female(c) in a belief base, but never both (unless
explicitly stated).
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System Functions

These (and other) functions are pre-defined:
Sum: 1 + 1 Subtract: 2− 3
Quotient: 5/8 Multiply: 13 ∗ 21
Minus: −34 Absolute: abs(2)
Square root: sqrt(16) Pi: pi
Integer: int(2.1) Random: random(16)
Time: cputime Ceiling: ceil(2.5)
Floor: floor(2.5) Assign: is(X, 3)
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Downloads

You can download SWI-Prolog here:

http://www.swi-prolog.org/

And you can download the relatives-example
from our homepage.
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Chapter 3. Some Scenarios

Some Scenarios
3.1 Wumpus
3.2 Harry and Sally
3.3 Agent Contest
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3. Some Scenarios

Content of this chapter:

We present two interesting scenarios and our
agent contest.
Wumpus: a simple yet difficult to solve

deterministic (but incomplete)
environment.

Harry and Sally: a simple test case for two agents
that communicate.

Agent Contest: where agents need to
collaborate together to achieve a goal
in an indeterministic environment.
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3. Some Scenarios 1. Wumpus

3.1 Wumpus
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3. Some Scenarios 1. Wumpus

Definition of suitable predicates

S(i, j) cell (i, j) stenches
B(i, j) cell (i, j) breezes
Gl(i, j) cell (i, j) glitters
Pit(i, j) cell (i, j) is a pit
W (i, j) cell (i, j) contains a Wumpus

The first three predicates correspond to percepts of the
agent.

The last two predicates can be determined based on the
observations of the agent and the path it has taken.
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3. Some Scenarios 1. Wumpus

General background knowledge

¬S(1, 1) −→ (¬W (1, 1) ∧ ¬W (1, 2) ∧ ¬W (2, 1))
¬S(2, 1) −→ (¬W (1, 1) ∧ ¬W (2, 1) ∧ ¬W (2, 2) ∧ ¬W (3, 1))
¬S(1, 2) −→ (¬W (1, 1) ∧ ¬W (1, 2) ∧ ¬W (2, 2) ∧ ¬W (1, 3))

S(1, 2) −→ (W (1, 3) ∨W (1, 2) ∨W (2, 2) ∨W (1, 1))

+ many more!!

These have to be rewritten in the form of rules a : − b.
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3. Some Scenarios 1. Wumpus

Belief base in initial state:

¬W (1, 1),¬S(1, 1),¬Pit(1, 1),¬B(1, 1)

Belief base after first move:

¬W (1, 1),¬S(1, 1),¬Pit(1, 1),¬B(1, 1),¬S(2, 1), B(2, 1)

Belief base after second move:

¬W (1, 1),¬S(1, 1),¬Pit(1, 1),¬B(1, 1),¬S(2, 1), B(2, 1)
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3. Some Scenarios 1. Wumpus

Belief base after the 3rd move:

¬W (1, 1),¬S(1, 1),¬Pit(1, 1),¬B(1, 1),¬S(2, 1), B(2, 1),
S(1, 2), B(2, 1),¬B(1, 2)

Question:
Can we deduce that the wumpus is located at (1,3)?

Answer:
Yes. This can be done automatically using built-in features
of the programming language: By querying W (1, 3)
against the belief base.
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3. Some Scenarios 1. Wumpus

Lab excercise

We will implement agents that are situated in
the wumpos world in one of the lab excercises.
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3. Some Scenarios 2. Harry and Sally

3.2 Harry and Sally
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3. Some Scenarios 2. Harry and Sally

Harry and Sally

This example is about two Agents living in a n× n grid.
The world can contain bombs, walls and dustbins.

Sally: Searching for bombs, notifying Harry when a
bomb has been found

Harry: Cleaning the grid by picking up the bombs
and throwing it in a dustbin.
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3. Some Scenarios 2. Harry and Sally
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3. Some Scenarios 2. Harry and Sally

Details

Percepts:
actual Position pos(1, 1)
visible bombs bomb(1, 2),bomb(3, 4), . . .

Actions:
movement north(),west(), south(), east()
bomb manipulation pickup(),drop()
entering the environment physically enter(1, 1, blue)
send a message

Roles:
Sally explores the environment (random), looks for
bombs, and informs Harry about detected bombs.
Harry waits until Sally sends bomb positions. Once
Harry becomes aware of a bomb he moves to it and
picks it up.
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3. Some Scenarios 2. Harry and Sally

Sally

Initial beliefs: ∅
Initial goals:

search(blockWorld)

Initial plans:
enter the environment at the position [8, 8]

Behavior: as long as Sally has the goal search(blockWorld)
1 go to a random position
2 sense visible bombs
3 if bombs are visible tell Harry about the position of the

bomb
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3. Some Scenarios 2. Harry and Sally

Harry

Initial beliefs: ∅
Initial goals:

clean(blockWorld)

Initial plans:
enter the environment at the position [0, 1]

Behavior: when Harry has the goal search(blockWorld) and
beliefs bomb(X, Y )

1 go to [X, Y ]
2 pick up bomb
3 go to [0, 0]
4 drop bomb
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3. Some Scenarios 2. Harry and Sally

Lab excercise

We will have a closer look at Harry and Sally in a
lab excercise.
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3. Some Scenarios 3. Agent Contest

3.3 Agent Contest
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3. Some Scenarios 3. Agent Contest

Scenario: Gold Miners

Task: Implement a team of agents that collects more
gold than the opponent.

Aim: Agents should cooperate and coordinate their
actions. Agents can take on roles and split into
subgroups to solve the overall task more
efficiently.
Emerging behaviour instead of a hard-wired
solution.

Environment: Can be quite indeterministic: percepts can
be blurred, actions could fail with certain
probability, ...
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3. Some Scenarios 3. Agent Contest

Environment

7
$

3

$
Figure 15: Elements in the environment

Agents
Gold
Obstacles
Depot
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3. Some Scenarios 3. Agent Contest

Figure 16: Gold Miners 2006: CLIMABot (blue) vs. brazil (red)
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3. Some Scenarios 3. Agent Contest

Details

Discrete Simulation: in each step do
send perceptions to agents
wait for agents’ actions or timeout
let agents act

Tournament Structure:
maximum step duration around 4 seconds
approx. 1000 steps per simulation
3 simulations = 1 match
each team plays against all others, 1 match
per pair
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3. Some Scenarios 3. Agent Contest

Technical details

Grid size: 30× 30

Perception failure: 1%
Action failure: 2%
Occupying the depot leads to teleporting the
agent
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3. Some Scenarios 3. Agent Contest

Lab excercise

We will implement agent teams in the lab
excercises and let the teams compete against
each other. The better one wins!
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3. Some Scenarios 3. Agent Contest

Scenario: Cows and Cowboys

Task: Implement a team of agents that collects more
cows than the opponent.

Aim: Agents have to cooperate and coordinate their
actions. Agents can take on roles and split into
subgroups to solve the overall task more
efficiently.
Emerging behaviour instead of a hard-wired
solution.

Environment: Can be quite indeterministic: behaviour of
cows, percepts can be blurred, actions could
fail with certain probability, ...
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3. Some Scenarios 3. Agent Contest

Environment

Cows
Cowboys
Corrals
Obstacles
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3. Some Scenarios 3. Agent Contest

What is the optimal solution?

We do not know!
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3. Some Scenarios 3. Agent Contest

Details

Discrete Simulation: in each step do
send perceptions to agents
wait for agents’ actions or timeout
let agents act and move cows

Tournament Structure:
maximum step duration around 4 seconds
approx. 1000 steps per simulation
3 simulations = 1 match
each team plays against all others, 1 match
per pair
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3. Some Scenarios 3. Agent Contest

Agents

fixed visibility range
(square)
actions: move to one
of eight directions
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3. Some Scenarios 3. Agent Contest

Cows

visibility range
(square)
afraid of: agents,
obstacles
feel good: near other
cows and empty
spaces
actions: move to one
of eight directions
slower than agents
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3. Some Scenarios 3. Agent Contest

Map: Razoredge
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3. Some Scenarios 3. Agent Contest

Map: Cowskullmountain
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4. 2APL

Chapter 4. 2APL

2APL
4.1 Abstractions in MAS
4.2 Programming in 2APL
4.3 Syntax
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4. 2APL

Content of this chapter:

We introduce 2APL and illustrate how to
construct agents using the provided syntactical
constructs.

1 Abstractions: IDE, deliberation cycle, recursive
plans.

2 Abstraction levels.
3 2APL programming constructs: Bases, rule

bases, operations on them.
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4. 2APL 1. Abstractions in MAS

4.1 Abstractions in MAS
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4. 2APL 1. Abstractions in MAS

Languages for Cognitive Agents (1)

Programming Languages for MAS
=

Data Structures + Programming Instructions
E.g., 2APL, 3APL, Jason, Jadex, Jack

Data Structures to represent mental state
Beliefs : General and specific Information about environment
Goals : Objectives that agent want to reach
Events : Observations of (environmental) changes
Capabilities : Actions that agent can perform
Plans : Procedures to achieve objectives
Reasoning rules : Reason about goals, events and plans

planning rules (goal→ plan)
event rules (event→ plan)
plan revision rules (plan→ plan)
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4. 2APL 1. Abstractions in MAS

Languages for Cognitive Agents (2)

Programming Instructions to process mental
states

Select Event
Plan Goals
Select Plans
Execute Plans
Select Rules
Apply Rules

Agent Interpreter or Agent Deliberation is a loop
consisting of such instructions. The loop
determines the behavior of the agent.
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4. 2APL 1. Abstractions in MAS

Motivation (1)

Languages for implementing MAS: Jack, Jadex, Jason,
3APL, ConGoLog, MetateM, IMPACT, CLAIM,
MINERVA, Go!
Efficient implementation of MAS architectures:
Individual Cognitive Agents, Shared Environment,
Multi-Agent Organisation
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4. 2APL 1. Abstractions in MAS

Motivation (2)

Support for Programming Principles: Recursion,
Compositionality, Abstraction, Exception Handling,
Encapsulation, Autonomy, Reusability, Heterogeneity,
Legacy Systems
Integrated Development Environment (IDE): Editor,
Debugging and Monitoring Facility, Support the
Development of Individual Agents, Multi-Agent
Organisation, and Shared Environment
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4. 2APL 1. Abstractions in MAS

Features of 2APL (1)

Programming Constructs:
Multi-Agent System: Which and how many agents to
create? Which environments? Which agent can access
which environment?
Individual Agent: Beliefs, Goals, Plans, Events,
Messages
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4. 2APL 1. Abstractions in MAS

Features of 2APL (2)

Programming Principles and Techniques:
Abstraction: Procedures/Recursion in Plans
Error Handling: Plan Failure and their revision by
Internal Events, Execution of Critical Region of Plans
Legacy Systems: Environment and External Actions
Encapsulation: Including 2APL files in other 2APL files
Autonomy: Adjustable Deliberation Process
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4. 2APL 1. Abstractions in MAS

Features of 2APL (3)

Integrated Development Environment:
2APL platform is built on JADE and uses related tools
Editor with High-Lighting Syntax
Monitoring mental attitudes of individual agents, their
reasoning and communications
Executing in one step or continuous mode
Visual Programming of the Deliberation Process
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4. 2APL 2. Programming in 2APL

4.2 Programming in 2APL
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4. 2APL 2. Programming in 2APL

Interlude – Grammar Notation

TMB: Hier brauchen wir ein paar Beispiele an der
Tafel.

Non-terminals: 〈zero〉, 〈one〉, 〈two〉...
Terminals: ”0”, ”1”, ”2”, ...
Rules: 〈zeroOneZero〉 := ”0” ”1” ”0” ;
Choice: 〈digit〉 := ”0” | ”1” | ”2” | ”3” | ...;
Ommission or repetition:
〈anystring〉 := { ”0” | ”1” };
Repetition: 〈anystring2 〉 := ( ”0” | ”1” )+;
Option: 〈oneOrOneOne〉 := [ ”1” ] ”1”;
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4. 2APL 2. Programming in 2APL

2APL Platform

2APL = MAS Progr. + Agent Progr.
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4. 2APL 2. Programming in 2APL

Abstraction Levels

Individual Agent: Autonomy, Situatedness, Proactivity
Cognitive concepts:
beliefs, goals, plans, actions
Deliberation and control:
sense/reason/act, reactive/pro-active

Multi-Agent: Social and Organizational Structures
Roles: functionalities, activities, and
responsibilities
Organizational Rules: constraints on roles
and their interactions
Organizational Structures: topology of
interaction patterns, control of activities

Environment: Resources and Services that MAS can access
and control
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4. 2APL 2. Programming in 2APL

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 2. Programming in 2APL

Data Structures

Beliefs: what the agent
knows about the world
Belief Updates: how the
agent updates its beliefs
Goals: states that the
agent wants to achieve
Plans: how to act
Events: messages,
external events from
external environments

Planning Goal Rules:
which plan to instantiate
in respect to the beliefs
and goals
Procedural Rules: which
plans to instantiate in
reaction to messages,
events and abstract
actions
Plan Repair Rules: how to
react to a failed action
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4. 2APL 3. Syntax

4.3 Syntax
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4. 2APL 3. Syntax

MAS Definition

〈MAS_Prog〉 = ( 〈agentname〉 ”:” 〈filename〉 [〈int〉]
[〈environments〉] )+ ;

〈agentname〉 = 〈ident〉 ;
〈filename〉 = 〈ident〉”.2apl” ;
〈environments〉 = ”@”〈ident〉 {”,”〈ident〉} ;

Examples:
harry : harry .2 apl @blockworld
s a l l y : s a l l y .2 apl @blockworld

un i t : un i t .2 apl 3 @env1 , env2
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4. 2APL 3. Syntax

Agent Programs

〈AgentProg〉 = { ”Include:”〈ident〉
| ”Beliefupdates:”〈BelUpSpec〉
| ”Beliefs:”〈beliefs〉
| ”Goals:”〈goals〉
| ”Plans:”〈plans〉
| ”PG rules:”〈pgrules〉
| ”PC rules:”〈pcrules〉
| ”PR rules:”〈prrules〉 } ;

This is how the initial state of an agent is defined.

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 184/233



4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Beliefs

〈belief 〉 = ( 〈ground_atom〉”.” |
〈atom〉 ”:-” 〈literals〉”.” )+ ;

Example:
B e l i e f s :

s t a r t ( 0 , 1 ) .
bomb( 3 , 3 ) .
c lean ( blockWorld ) :− not bomb(X, Y ) ,

not c a r r y (bomb) .

 Prolog facts and rules
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Belief Updates

〈BelUpSpec〉 = ( ”{”〈belquery〉”}”
〈beliefupdate〉
”{”〈literals〉”}” )+ ;

Structure:

{ pre } Be l ie fUpdateAct ion { post }
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4. 2APL 3. Syntax

Belief Updates Example

BeliefUpdates :
{ bomb(X, Y ) }

RemoveBomb(X, Y )
{ not bomb(X, Y ) }

{ true }
AddBomb(X, Y )

{ bomb(X, Y ) }
{ c a r r y (bomb) }

Drop ( )
{ not c a r r y (bomb) }

{ not c a r r y (bomb) }
PickUp ( )

{ c a r r y (bomb) }
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Goals

〈goals〉 = 〈goal〉 { ”,”〈goal〉 } ;
〈goal〉 = 〈ground_atom〉 { ”and” 〈ground_atom〉 } ;

Example:

Goals :
c lean ( blockWorld )
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Plans

Plans = Basic Actions + Plan Operators
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4. 2APL 3. Syntax

Basic Actions

An agent can
do nothing,
update its beliefs,
send a message,
act in the external environment(s),
execute a plan,
test its beliefs/goals,
adopt a goal, and
drop a goal.
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4. 2APL 3. Syntax

Basic Actions

〈baction〉 = ”skip”
| 〈beliefupdate〉
| 〈sendaction〉
| 〈externalaction〉
| 〈abstractaction〉
| 〈test〉
| 〈adoptgoal〉
| 〈dropgoal〉 ;
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4. 2APL 3. Syntax

Belief Update Action

Let T be the function that takes a belief update action
and a belief base, and returns the modified belief base
if the pre-condition of the action is entailed by the
agent’s belief base.
This function can be defined based on the specification
of the belief update actions.
If the belief update action cannot be applied, the
action fails.
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4. 2APL 3. Syntax

Belief Update Action

〈beliefupdate〉 =〈Atom〉 ;

Examples:

PickUp ( )

RemoveBomb( X, Y )

Applies the BeliefUpdates.

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 197/233

4. 2APL 3. Syntax

Send Action

〈sendaction〉 = ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈atom〉 ”)” ;
| ”send(” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,” 〈iv〉 ”,”
〈atom〉 ”)” ;

Example:

send ( harry , inform , bombAt( X1 , Y1 ) )

Informs harry that there is a bomb at a specific position.
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4. 2APL 3. Syntax

Send Action

An agent can send a message to another agent by
means of the send(j, p, l, o, φ) action.
An agent is assumed to be able to receive a message
that is sent to it at any time. The received message is
added to the event base of the agent.
Synchronized Communication: The execution of the
send action will broadcast a message which will be
received by the receiving agent and added in its event
base.
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4. 2APL 3. Syntax

External Action

〈externalaction〉 = ”@”〈ident〉”(”〈atom〉 ”,” 〈Var〉 ”)” ;

Example:

@blockworld ( pickup ( ) , L1 )

Execute the action pickup() in the environment
blockworld. The return value is stored in L1.
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4. 2APL 3. Syntax

Abstract Action

〈abstractaction〉 = 〈atom〉 ;

Example:

goto ( X , Y )

Executes the plan goto( X, Y ).
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4. 2APL 3. Syntax

Test Action

〈test〉 = ”B(” 〈belquery〉 ”)”
| ”G”( 〈goalquery〉 ”)”
| 〈test〉 ”&” 〈test〉 ;

Example:
B ( bomb (3 ,3) )

G( clean ( blockworld ) )

B ( POS = [ X , Y ] ) ;

 Prolog queries to belief- and goal-base
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4. 2APL 3. Syntax

Adopt Goal Action

〈adoptgoal〉 = ”adopta(” 〈goalvar〉 ”)”
| ”adoptz(” 〈goalvar〉 ”)” ;

Example:

adopta ( c lean ( blockWorld ) )

adoptz ( c lean ( blockWorld ) )
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4. 2APL 3. Syntax

Drop Goal Action

〈dropgoal〉 = ”dropgoal(” 〈goalvar〉 ”)”
| ”dropsubgoals(” 〈goalvar〉 ”)”

Example:

dropgoal ( c lean ( blockWorld ) )
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4. 2APL 3. Syntax

About Goal Actions

As the goal base of an agent is defined as a list,
adopta(φ) action adds goal φ to the begin of goal base
and adoptz(φ) adds it to the end of the goal base.
If the goal is already believed, the adopt goal action
fails.
Goals can be dropped and removed from the goal
base by means of dropgoal(φ), dropsubgoals(φ), and
dropsupergoals(φ) actions.
The first action removes the goal φ from the goal base,
the second action removes all subgoals of the goals φ
from the goal base, and the third action removes all
goals that entail the goal φ from the goal base. These
actions succeeds always.
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4. 2APL 3. Syntax

Plan Operators

Basic actions can be composed using operators
for

sequence,
conditional choice,
conditional iteration, and
atomic plans.
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4. 2APL 3. Syntax

Plan Operators

〈plans〉 =〈plan〉 { ”,” 〈plan〉 } ;
〈plan〉 =〈baction〉 | 〈sequenceplan〉 | 〈ifplan〉 | 〈whileplan〉

| 〈atomicplan〉 ;
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4. 2APL 3. Syntax

Sequence

〈sequenceplan〉 = 〈plan〉 ”;” 〈plan〉 ;

Example:

goto ( 0 , 0 ) ;
@blockworld ( drop ( ) , L2 ) ;
Drop ( )
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4. 2APL 3. Syntax

Conditional Choice

〈ifplan〉 = ”if” 〈test〉 ”then” 〈scopeplan〉 [”else” 〈scopeplan〉] ;

Example:
i f B ( not bomb( A , B ) ) then
{

AddBomb( X, Y ) ;
adoptz ( c lean ( blockWorld ) )

}
else
{

AddBomb( X, Y )
}
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4. 2APL 3. Syntax

Conditional Iteration

〈whileplan〉 = ”while” 〈test〉 ”do” 〈scopeplan〉 ;

Example:

while G( clean ( blockworld ) ) do
{

skip
}
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4. 2APL 3. Syntax

Atomic Plan

〈atomicplan〉 = ”[” 〈plan〉 ”]” ;

Example:

[AddBomb( X, Y ) ;
adoptz ( c lean ( blockWorld ) ) ]
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4. 2APL 3. Syntax

Plans Example 1

{
goto ( X , Y ) ;
@blockworld ( pickup ( ) , L1 ) ;
PickUp ( ) ;
RemoveBomb( X, Y ) ;
goto ( 0 , 0 ) ;
@blockworld ( drop ( ) , L2 ) ;
Drop ( )

}
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4. 2APL 3. Syntax

Plans Example 2

{
i f B ( not bomb( A , B ) ) then
{

AddBomb( X, Y ) ;
adoptz ( c lean ( blockWorld ) )

}
else

{ AddBomb( X, Y ) }
}
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4. 2APL 3. Syntax

Initial Plans vs Reasoning Rule Plans

An initial plan:

P lans :
{

B ( s t a r t (X , Y ) ) ;
@blockworld ( enter ( X , Y , blue ) , L )

}
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 215/233

4. 2APL 3. Syntax

Reasoning Rules

Planning Goal Rules (PG Rules): generate plans if an agent
has certain goals and beliefs.

Procedural Rules (PC Rules): generate plans as a response
to the reception of a message, events
generated by the external environment(s), and
the execution of abstract actions.

Plan Repair Rules (PR Rules): generate plans if an agent’s
actions fail.
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Planning Goal Rules (PG Rules)

〈pgrules〉 = 〈pgrule〉+ ;
〈pgrule〉 = [〈goalquery〉] ”<-” 〈belquery〉 ”|” 〈plan〉 ;
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4. 2APL 3. Syntax

PG Rules Example

PG−rules :
c lean ( blockWorld ) <− bomb( X, Y ) |
{

goto ( X , Y ) ;
@blockworld ( pickup ( ) , L1 ) ;
PickUp ( ) ;
RemoveBomb( X, Y ) ;
goto ( 0 , 0 ) ;
@blockworld ( drop ( ) , L2 ) ;
Drop ( )
}
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Events

There are three kinds of events:
incoming messages,
events from the external environment, and
abstract action execution.
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Procedural Rules (PC Rules)

〈pcrules〉 = 〈pcrule〉+ ;
〈pcrule〉 = 〈atom〉 ”<-” 〈belquery〉 ”|” 〈plan〉 ;
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4. 2APL 3. Syntax

PC Rules Example (received message)

PC−rules :
message ( s a l l y , inform , La ,On, bombAt( X , Y ) )
<− true | {

i f B ( not bomb( A , B ) ) then
{

AddBomb( X, Y ) ;
adoptz ( c lean ( blockWorld ) )

}
else
{

AddBomb( X, Y )
}

}
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4. 2APL 3. Syntax

PC Rules Example (external event)

PC−rules :
event ( s imResul t ( R ) , Env ) <− true | {

p r i n t ( " S imulat ion i s over . " ) ;
p r i n t ( R )

}
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4. 2APL 3. Syntax

PC Rules Example (abstract action)

PC−rules :
goto ( X , Y ) <− true |
{

@blockworld ( sensePos i t ion ( ) , POS ) ;
B (POS = [A , B ] ) ;
i f B (A > X) then
{ @blockworld ( west ( ) , L ) ;

goto ( X , Y )
}
else i f B (A < X) then
{ @blockworld ( eas t ( ) , L ) ;

goto ( X , Y )
}

. . .
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Plan Repair Rules (PR Rules)

〈prrules〉 = 〈prrule〉+ ;
〈prrule〉 = 〈planvar〉 ”<-” 〈belquery〉 ”|” 〈planvar〉 ;
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4. 2APL 3. Syntax

PR Rules Example

PR−rules :
@blockworld ( pickup ( ) , L ) ; REST
<− true | {

@blockworld ( sensePos i t ion ( ) , POS ) ;
B ( POS = [ X , Y ] ) ;
RemoveBomb( X , Y )

}
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4. 2APL 3. Syntax

Data Structures

Deliberation
Process

Belief
Base

Goal
Base

Plan
Base

Event
Base

Belief
Updates

Plan Repair
Rule Base

Procedural
Rule Base

Planning Goal
Rule Base
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4. 2APL 3. Syntax

Deliberation Process

Start Apply all PG rules

Execute first action 
of all plans

Process 
External Events

Process 
Internal Events

Process Messages Remove Reached Goals

Rules Applied,
Plans Executed,

Events or Messages
Processed?

Sleep until external
events or messages

arrive

No

Yes

Prof. Dr. Jürgen Dix · Department of Informatics, TUC Multiagent Systems I, WS 08/09 231/233

4. 2APL 3. Syntax

Downloads

The complete grammar is contained in the 2APL
user guide.

You can download the 2APL IDE and the user
guide here:
http://www.cs.uu.nl/2apl/
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http://www.cs.uu.nl/2apl/


4. 2APL 3. Syntax

2APL Programming Example

Harry and Sally will be explained in detail in the
next lab excercise.
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