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About this Lecture
This course gives a first introduction to multi-agent systems
for Bachelor students. Emphasis is put on applications and
programming MAS, not on theory.
Only the first two weeks are in class, the rest are labs where
students are programming a team to compete in our
newest agent contest scenario. Students are grouped into
teams and implement agent teams for solving a task on our
agent contest platform. We consider BDI as a basic
framework for developing agents using JAVA.

My thanks go to Tristan, Michael, Federico and our students
who prepared the lab work and also some of the slides of
this course.
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Lecture Overview

1. Week: 1. Introduction, 2.1 Reactive
Agents

2. Week: 2.2 BDI, 3. Searching
3. Week: 4. Agent Contest Scenario
4.-15. Week: Labs.
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Outline

1 Introduction

2 Basic Architectures

3 Searching

4 MASSim & The Multi-Agent
Programming Contest
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1 Introduction

1. Introduction
1 Introduction

Why Agents?
Intelligent Agents
Formal Description
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1 Introduction

Content of this Chapter:

We are setting the stage for a precise discussion of
agency. From informal concepts to (more or
less) mathematical definitions.

1 MAS versus Distributed AI (DAI),
2 Environment of agents,
3 Agents and other frameworks,
4 Runs as characteristic behaviour,
5 state-based versus standard agents.
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1 Introduction
1.1 Why Agents?

1.1 Why Agents?
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1 Introduction
1.1 Why Agents?

Three Important Questions

(Q1) What is a (software) agent?
(Q2) If some program P is not an agent, how

can it be transformed into an agent?
(Q3) If (Q1) is clear, what kind of Software

Infrastructure is needed for the
interaction of agents? What services are
necessary?
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1 Introduction
1.1 Why Agents?

Definition 1.1 (Distributed AI (DAI))

The area investigating systems, where several
autonomous acting entities work together to
reach a given goal.

The entities are called Agents, the area
Multiagent Systems.
AAMAS: several conferences joined in 2002 to
form the main annual event. Bologna (2002),
Melbourne (2003), New York (2004), Utrecht
(2005), Hakodate (2006), Hawaii (2007), Lisbon
(2008), Budapest (2009), Toronto (2010), Taiwan
(2011).
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1 Introduction
1.1 Why Agents?

Example 1.2 (RoboCup)

Figure: 2D-Simulation league: RoboCup 2007 Final
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1 Introduction
1.1 Why Agents?

Example 1.3 (RoboCup)

Figure: 3D-Simulation league: RoboCup 2007 Final
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1 Introduction
1.1 Why Agents?

Example 1.4 (RoboCup)

Figure: Small size league
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1 Introduction
1.1 Why Agents?

Example 1.5 (RoboCup)

Figure: Middle size league
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1 Introduction
1.1 Why Agents?

Example 1.6 (RoboCup)

Figure: Standard platform
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1 Introduction
1.1 Why Agents?

Example 1.7 (RoboCup)

Figure: Humanoid league
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1 Introduction
1.1 Why Agents?

Example 1.8 (RoboCup)

Figure: Rescue league
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1 Introduction
1.1 Why Agents?

Example 1.9 (Grand Challenge 2004)
Grand Challenge: Organised by DARPA since 2004.
First try: Huge Failure.

Figure: Grand Challenge 2004
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1 Introduction
1.1 Why Agents?

Prize money: 1 million Dollars
Race course: 241 km in the Mojave desert
10 hours pure driving time
More than 100 registered participants, 15 of
them were chosen
No one reached the end of the course
The favourite “Sandstorm” of Carnegie
Mellon in Pittsburgh managed 5% of the
distance
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1 Introduction
1.1 Why Agents?

Example 1.10 (Grand Challenge 2005)
Second try: Big Success:
Stanley (Sebastian Thrun) won in 2005.

Figure: VW Touareg coached by Stanford University

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 21

1 Introduction
1.1 Why Agents?

Prize money: 2 million Dollars
Race course: 212,76 km in the Mojave desert
10 hours pure driving time
195 registered participants, 23 were qualified
5 teams reached the end of the course (4
teams in time)
Stanley finished the race in 6 hours and 53
minutes (30,7 km/h)
Sandstorm achieved the second place
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1 Introduction
1.1 Why Agents?

Example 1.11 (Urban Challenge)
Urban Challenge: Organised by DARPA in 2007.

Figure: Urban Challenge 2007
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1 Introduction
1.1 Why Agents?

No straight-line course but real streets covered
with buildings.
60 miles
Prize money: 3,5 million Dollars
Tartan Racing won, Stanford Racing Team
second, VictorTango third place.
Some teams like Stanford Racing Team and
VictorTango as well as Tartan Racing were
sponsored by DARPA with 1 million Dollar
beforehand.
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1 Introduction
1.1 Why Agents?

Example 1.12 (CLIMA Contest: Gold Mining)
First try: A simple grid where agents are supposed to collect gold.
Different roles of agents: scouts, collectors.

http://multiagentcontest.org

7
$

3

$

Figure: Gold mining elements
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1 Introduction
1.1 Why Agents?

Figure: Gold Mining 2006: CLIMABot (blue) vs. brazil (red)
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1 Introduction
1.1 Why Agents?

Example 1.13 (Agent Contest: Chasing Cows)

Second try: Push cows in a corral.
http://multiagentcontest.org
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1 Introduction
1.1 Why Agents?

Figure: Chasing Cows 2008
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1 Introduction
1.1 Why Agents?

Figure: Chasing Cows 2009

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 29

1 Introduction
1.1 Why Agents?

Figure: Chasing Cows 2010
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1 Introduction
1.1 Why Agents?

Figure: Mars Scenario 2011
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1 Introduction
1.1 Why Agents?

Agents: Why do we need them?

Information systems are distributed,
open, heterogenous.
We therefore need intelligent,
interactive agents, that act
autonomously.
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1 Introduction
1.1 Why Agents?

(Software) Agent: Programs that are
implemented on a platform and have
sensors and effectors to read from and
make changes to the environment,
respectively.

Intelligent: Performance measures, to evaluate
the success. Rational vs. omniscient,
decision making

Interactive: with other agents (software or
humans) by observing the environment.
Coordination: Cooperation
vs. Competition
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1 Introduction
1.1 Why Agents?

MAS versus Classical DAI

MAS: Several Agents coordinate their
knowledge and actions (semantics
describes this).

DAI: Particular problem is divided into
smaller problems (nodes). These nodes
have common knowledge. The
solution method is given.

Attention:

Today DAI is used synonymously with MAS.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 34

1 Introduction
1.1 Why Agents?

AI DAI
Agent Multiple Agents
Intelligence: Intelligence:
Property of a Property of
single Agent several Agents
Cognitive Processes Social Processes
of a single Agent of several Agents
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1 Introduction
1.1 Why Agents?

10 Desiderata

1. Agents are for everyone! We need a method
to agentise given programs.

2. Take into account that data is stored in a
wide variety of data structures, and data is
manipulated by an existing corpus of
algorithms.

3. A theory of agents must not depend upon the
set of actions that the agent performs. Rather,
the set of actions that the agent performs
must be a parameter that is taken into
account in the semantics.
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1 Introduction
1.1 Why Agents?

10 Desiderata

4. Every (software) agent should execute
actions based on some clearly articulated
decision policy. A declarative framework for
articulating decision policies of agents is
imperative.

5. Any agent construction framework must allow
agents to reason:

Reasoning about its beliefs about other agents.
Reasoning about uncertainty in its beliefs about the world
and about its beliefs about other agents.
Reasoning about time.

These capabilities should be viewed as
extensions to a core agent action language.
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1 Introduction
1.1 Why Agents?

10 Desiderata

6. Any infrastructure to support multiagent
interactions must provide security.

7. While the efficiency of the code underlying a
software agent cannot be guaranteed (as it
will vary from one application to another),
guarantees are needed that provide
information on the performance of an
agent relative to an oracle that supports
calls to underlying software code.
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1 Introduction
1.1 Why Agents?

10 Desiderata

8. We must identify efficiently computable
fragments of the general hierarchy of
languages alluded to above, and our
implementations must take advantage of the
specific structure of such language fragments.

9. A critical point is reliability—there is no point
in a highly efficient implementation, if all
agents deployed in the implementation come
to a grinding halt when the agent
“infrastructure” crashes.
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1 Introduction
1.1 Why Agents?

10 Desiderata

10. The only way of testing the applicability of any
theory is to build a software system based
on the theory, to deploy a set of applications
based on the theory, and to report on
experiments based on those applications.
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1 Introduction
1.2 Intelligent Agents

1.2 Intelligent Agents
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1 Introduction
1.2 Intelligent Agents

Definition 1.14 (Agent aaa)

An agent aaa is anything that can be viewed as
perceiving its environment through sensor and
acting upon that environment through effectors.

?

agent

percepts

sensors

actions

effectors

environment
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1 Introduction
1.2 Intelligent Agents

Definition 1.15 (Rational, Omniscient Agent)

A rational agent is one that does the right thing
(Performance measure determines how
successful an agent is).

A omniscient agent knows the actual outcome of
his actions and can act accordingly.

Attention:

A rational agent is in general not omniscient!
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1 Introduction
1.2 Intelligent Agents

Question

What is the right thing and what does it depend
on?

1 Performance measure (as objective as
possible).

2 Percept sequence (everything the agent has
received so far).

3 The agent’s knowledge about the
environment.

4 How the agent can act.
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1 Introduction
1.2 Intelligent Agents

Definition 1.16 (Ideal Rational Agent)

For each possible percept-sequence an ideal
rational agent should do whatever action is
expected to maximize its performance measure
(based on the evidence provided by the percepts
and built-in knowledge).
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1 Introduction
1.2 Intelligent Agents

Mappings:

set of percept sequences 7→ set of actions

can be used to describe agents in a mathematical
way.

Hint:

Internally an agent is

agent = architecture + program

AI is engaged in designing agent programs
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1 Introduction
1.2 Intelligent Agents

Agent Type Perform. Measure Environment Actuators Sensors
Medical diagnosis Healthy patient, Patient, hospital,Display questions, tests, Entry of symptoms,

system minimize costs staff diagnoses, treatments findings, patient’s answers
Satellite image Correct image Downlink from Display categorization Color pixel
analysis system categorization orbiting satellite of scene arrays

Part-picking Percentage of parts Conveyor belt Jointed arm Camera, joint
robot in correct bins with parts; bins and hand angle sensors

Interactive Maximize student’s Set of students, Display exercises, Keyboard entry
English tutor score on test testing agency suggestions, corrections

Table: Examples of agents types and their PEAS descriptions.
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1 Introduction
1.2 Intelligent Agents

Question:
How do environment properties influence agent design?

Definition 1.17 (Environment Properties)
Accessible/Inaccessible: If not completely accessible, one needs internal

states.

Deterministic/Indeterministic: An inaccessible environment might seem
indeterministic, even if it is not.

Episodic/Nonepisodic: Percept-Action-Sequences are independent from each
other. Closed episodes.

Static/Dynamic: While the agent is thinking, the world is the same/changing.
Semi-dynamic: The world does not change, but the
performance measure.

Discrete/Continous: Density of observations and actions. Relevant: Level of
granularity.
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1 Introduction
1.2 Intelligent Agents

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

xbiff, software demons are agents (not intelligent).
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1 Introduction
1.2 Intelligent Agents

Definition 1.18 (Intelligent Agent)

An intelligent agent is an agent with the
following properties:

1 Autonomous: Operates without direct
intervention of others, has some kind of
control over its actions and internal state.

2 Reactive: Reaction to changes in the
environment at certain times to reach its goals.

3 Pro-active: Taking the initiative, being
goal-directed.

4 Social: Interaction with others to reach the
goals.
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1 Introduction
1.2 Intelligent Agents

Pro-active alone is not sufficient
(C-Programs): The environment can
change during execution.

Socialisation: coordination,
communication, (negotiation) skills.

Difficulty: right balance between
pro-active and reactive!
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1 Introduction
1.2 Intelligent Agents

Agents vs. Object Orientation I

Objects have
1 a state (encapsulated): control over internal

state
2 message passing capabilities

Java: private and public methods.

Objects have control over their state, but not
over their behaviour.
An object can not prevent others to use its
public methods.
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1 Introduction
1.2 Intelligent Agents

Agents vs. Object Orientation II

Agents call other agents and request them to
execute actions.

Objects do it for free, agents do it for
money.
No analoga to reactive, pro-active, social in
OO.
MAS are multi-threaded or even
multi-processed: each agent has a control
thread or is a new process. (In OO only the
system as a whole possesses one.)
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1 Introduction
1.2 Intelligent Agents

A Simple Agent Program
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1 Introduction
1.2 Intelligent Agents

In Theory Everything is Trivial
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1 Introduction
1.2 Intelligent Agents

Example 1.19 (Agent: Taxi Driver)

PEAS description of the task environment for an
automated taxi:
Performance Measure: Safe, fast, legal, maximize

profits
Environment: Roads, other traffic, pedestrians,

customers
Actuators: Steering, accelerator, brake, signal,

horn
Sensors: Cameras, sonar, GPS, odometer, engine

sensors
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1 Introduction
1.2 Intelligent Agents

Example 1.20 (Agent: Taxi Driver)
1 Production rules: If the driver in front hits the breaks, then

hit the breaks too.
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1 Introduction
1.2 Intelligent Agents

Agents as Intentional Systems

Intentions: Agents are endowed with mental
states.

Matthias took his umbrella because he believed it
was going to rain.
Kjeld attended the MAS course because he
wanted to learn about agents.

An intentional system describes entities whose
behaviour can be predicted by the method of
attributing beliefs, desires and rational acumen.
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1 Introduction
1.3 Formal Description

1.3 Formal Description
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1 Introduction
1.3 Formal Description

A First Mathematical Description

At first, we want to keep everything as simple as
possible.
Agents and environments

An agent is situated in an environment and can
perform actions

A := {a1, . . . , an} (set of actions)

and change the state of the environment

S := {s1, s2, . . . , sn} (set of states).
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1 Introduction
1.3 Formal Description

How does the environment (the state s) develop when an
action a is executed?

We describe this with a function

env : S×A −→ 2S.

This includes non-deterministic
environments.
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1 Introduction
1.3 Formal Description

How do we describe agents?
We could take a function action : S −→ A.

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1 Introduction
1.3 Formal Description

Question:

How can we describe an agent, now?

Definition 1.21 (Purely Reactive Agent)

An agent is called purely reactive, if its
function is given by

action : S −→ A.
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1 Introduction
1.3 Formal Description

This is too weak!

Take the whole history (of the
environment) into account:
s0 →a0 s1 →a1 . . . sn →an . . ..

The same should be done for env!
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1 Introduction
1.3 Formal Description

This leads to agents that take the whole
sequence of states into account, i.e.

action : S∗ −→ A.

We also want to consider the actions performed
by an agent. This requires the notion of a run
(next slide).
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1 Introduction
1.3 Formal Description

We define the run of an agent in an environment
as a sequence of interleaved states and actions:

Definition 1.22 (Run r, R = Ract ∪ Rstate)

A run r over A and S is a finite sequence

r : s0 →a0
s1 →a1

. . . sn →an
. . .

Such a sequence may end with a state sn or with
an action an: we denote by Ract the set of runs
ending with an action and by Rstate the set of
runs ending with a state.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 66

1 Introduction
1.3 Formal Description

Definition 1.23 (Environment, 2. version)

An environment Env is a triple 〈S, s0, τττ〉
consisting of

1 the set S of states,
2 the initial state s0 ∈ S,
3 a function τττ : Ract −→ 2S, which describes how

the environment changes when an action is
performed (given the whole history).
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1 Introduction
1.3 Formal Description

Definition 1.24 (Agent aaa)
An agent aaa is determined by a function

action : Rstate −→ A,

describing which action the agent performs, given its current
history.

Important:
An agent system is then a pair aaa = 〈action, Env〉 consisting of an
agent and an environment.
We denote by R(aaa, Env) the set of runs of agent aaa in
environment Env.
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1 Introduction
1.3 Formal Description

Definition 1.25 (Characteristic Behaviour)

The characteristic behaviour of an agent aaa in an
environment Env is the set R of all possible runs
r : s0 →a0

s1 →a1
. . . sn →an

. . . with:
1 for all n: an = action(〈s0, a0 . . . , an−1, sn〉),
2 for all n > 0: sn ∈ τττ(s0, a0, s1, a1, . . . , sn−1, an−1).

For deterministic τττ , the relation “∈” can be
replaced by “=”.
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1 Introduction
1.3 Formal Description

Important:

The formalization of the characteristic behaviour is
dependent of the concrete agent type. Later we
will introduce further behaviours (and
corresponding agent designs).

Equivalence

Two agents aaa, bbb are called behaviourally
equivalent wrt. environment Env, if
R(aaa, Env) = R(bbb, Env).
Two agents aaa, bbb are called behaviourally
equivalent, if they are behaviourally equivalent
wrt. all possible environments Env.
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1 Introduction
1.3 Formal Description

So far so good, but...

What is the problem with all these agents
and this framework in general?

Problem

All agents have perfect information
about the environment!
(Of course, it can also be seen as feature!)
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1 Introduction
1.3 Formal Description

We need more realistic agents!

Note

In general, agents only have
incomplete/uncertain information about the
environment!

We extend our framework by perceptions:
Definition 1.26 (Actions, Percepts, States)

A := {a1, a2, . . . , an} is the set of actions.
P := {p1,p2, . . . ,pm} is the set of percepts.
S := {s1, s2, . . . , sl} is the set of states
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1 Introduction
1.3 Formal Description

Sensors don’t need to provide perfect information!

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do nowCondition−action rules
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1 Introduction
1.3 Formal Description

Question

How can agent programs be designed?

There are four types of agent programs:
Simple reflex agents
Agents that keep track of the world
Goal-based agents
Utility-based agents
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1 Introduction
1.3 Formal Description

First Try

We consider a purely reactive agent and
just replace states by perceptions.

Definition 1.27 (Simple Reflex Agent)

An agent is called simple reflex agent, if
its function is given by

action : P −→ A.
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1 Introduction
1.3 Formal Description

A Very Simple Reflex Agent
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1 Introduction
1.3 Formal Description

A Simple Reflex Agent with Memory
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1 Introduction
1.3 Formal Description

As before, let us now consider sequences of
percepts:

Definition 1.28 (Standard Agent aaa)

action : P∗ −→ A

together with

see : S −→ P.

An agent is thus a pair 〈see, action〉.
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1 Introduction
1.3 Formal Description

Definition 1.29 (Indistinguishable)

Two different states s, s′ are indistinguishable for
an agent aaa, if see(s) = see(s′).

The relation “indistinguishable” on S× S is an
equivalence relation.
What does | ∼ | = |S|mean?
And what | ∼ | = 1?
As mentioned before, the characteristic behaviour
has to match with the agent design!
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1 Introduction
1.3 Formal Description

Definition 1.30 (Characteristic Behaviour)

The characteristic behaviour of a standard agent
〈see, action〉 in an environment Env is the set of
all finite sequences

p0 →a0
p1 →a1

. . .pn →an
. . . where

p0 = see(s0),
ai = action(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1).

Such a sequence, even if deterministic from the
agent’s viewpoint, may cover different
environmental behaviours (runs):
s0 →a0

s1 →a1
. . . sn →an

. . .
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1 Introduction
1.3 Formal Description

Instead of using the whole history, resp. P∗, one
can also use internal states
I := {i1, i2, . . . , in, in+1, . . .}.
Definition 1.31 (State-based Agent aaastate)

A state-based agent aaastate is given by a function
action : I −→ A together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is
observed.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 81

1 Introduction
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Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Condition−action rules
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1.3 Formal Description

Definition 1.32 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent aaastate in an
environment Env is the set of all finite sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an−1 (in,pn), . . .

with
p0 = see(s0),
pi = see(si), where si ∈ τττ(s0, a0, s1, a1, . . . , si−1, ai−1),
an = action(in+1),
next(in,pn) = in+1.

Sequence covers the runs r : s0 →a0 s1 →a1 . . . where

aj = action(ij+1),
sj ∈ τττ(s0, a0, s1, a1, . . . , sj−1, aj−1),
pj = see(sj)
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1 Introduction
1.3 Formal Description

Are state-based agents more expressive than
standard agents? How to measure?

Definition 1.33 (Env. Behaviour of aaastate)

The environmental behaviour of an agent aaastate
is the set of possible runs covered by the
characteristic behaviour of the agent.
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1 Introduction
1.3 Formal Description

Theorem 1.34 (Equivalence)

Standard agents and state-based agents are
equivalent with respect to their environmental
behaviour.
More precisely: For each state-based agent aaastate
and next storage function there exists a standard
agent aaa which has the same environmental
behaviour, and vice versa.
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1.3 Formal Description

Goal based agents

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What it will be like
  if I do action A

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

Goals

This leads to Planning.
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2. Basic Architectures
2 Basic Architectures

Reactive Agents
BDI-Agents
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2 Basic Architectures

Content of this Chapter:

We are presenting two very basic architectures: a
simple subsumption architecture, and an
important paradigm of agent programming: The
BDI-framework. While this is a very general
framework, several programming languages can
be seen as implementations of BDI.

1 We present a simple model for a subsumption
architecture.

2 We discuss the agent control loop of BDI
through several stages.

3 We introduce means-end reasoning.
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2.1 Reactive Agents
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2 Basic Architectures
2.1 Reactive Agents

Idea:

Intelligent behaviour is Interaction of
the agents with their environment.

It emerges through splitting in simpler
interactions.
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2 Basic Architectures
2.1 Reactive Agents

Subsumption-Architectures:
Decision making is realized through
goal-directed behaviours: each behaviour is
an individual action.
nonsymbolic implementation.
Many behaviours can be applied
concurrently. How to select between them?
Implementation through
Subsumption-Hierarchies, Layers.
Upper layers represent abstract behaviour.
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2.1 Reactive Agents

Formal Model:

see: Close relation between observation and action: no
transformation of the input.
action: Set of behaviours and a relation.

Beh := {〈c, a〉 : c ⊆ P, a ∈ A}.
〈c, a〉 “fires” if see(s) ∈ c

≺⊆ Agrules × Agrules

is called inhibition-relation, Agrules ⊆ Beh.
We require ≺ to be a total ordering.
b1≺b2 means: b1 inhibits b2,
b1 has priority over b2.
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2 Basic Architectures
2.1 Reactive Agents

Example 2.1 (Exploring a Planet)

A distant planet (asteroid) is assumed to contain
gold. Samples should be brought to a spaceship
landed on the planet. It is not known where the
gold is. Several autonomous vehicles are
available. Due to the topography of the planet
there is no connection between the vehicles.

Gradient Field

The spaceship sends off radio signals: gradient
field.
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2.1 Reactive Agents

Low Level Behaviour: (1) If detect an obstacle
then change direction.

2. Layer: (2) If Samples on board and at base
then drop off.
(3) If Samples on board and not at base
then follow gradient field.

3. Layer: (4) If Samples found then pick them up.
4. Layer: (5) If true then take a random walk.
With the following ordering

(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5).
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2.1 Reactive Agents

Assumptions

Under which assumptions (on the
distribution of the gold) does this work
perfectly?
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2.1 Reactive Agents

Coordination

Vehicles can communicate indirectly
with each other:

they put off, and
pick up

radioactive samples that can be sensed.
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2 Basic Architectures
2.1 Reactive Agents

Low Level Behaviour:
(1) If detect an obstacle then change direction.

2. Layer:
(2) If Samples on board and at base then drop off.
(3) If Samples on board and not at base then drop
off two radioactive crumbs and follow gradient field.

3. Layer:
(4) If Samples found then pick them up.
(5) If radioactive crumbs found then take one and
follow the gradient field (away from the spaceship).

4. Layer:
(6) If true then take a random walk.

With the ordering (1) ≺ (2) ≺ (3) ≺ (4) ≺ (5) ≺ (6).
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2 Basic Architectures
2.1 Reactive Agents

Pro: Simple, economic, efficient, robust, elegant.

Contra:

Without knowledge about the environment
agents need to know about the own local
environment.
Decisions only based on local information.
How about bringing in learning?
Relation between agents, environment and
behaviours is not clear.
Agents with ≤ 10 behaviours are doable. But the
more layers the more complicated to
understand what is going on.
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2.2 BDI-Agents
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2 Basic Architectures
2.2 BDI-Agents

What is BDI?
BDI is based on the assumption that the mind,
that is the mental state, of agents consists of:

beliefs: what the agent believes to be true
about the world (information).
desires: which state(s) of the world the agents
wants to establish (motivation).
intentions: what the agent actually intends to
do and how to do it (deliberation).

The world of an agent is the other agents, the
environment, and the agent itself.
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2.2 BDI-Agents

Where does it come from?

BDI builds on three subfields of artificial
intelligence:

rational agents,
planning, and
decision theory.
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2 Basic Architectures
2.2 BDI-Agents

What is it good for?

BDI allows for
means-end reasoning,
weighing of competing possibilities,
the interaction between these two forms of
reasoning, and addresses the problem of
resource-boundedness.
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2.2 BDI-Agents

Means-end reasoning

comes from the subfield of AI that deals with
planning
Given: an initial state, a set of goal states
(ends), and a description of actions (means or
capabilities)
Goal: find a sequence of actions (plan) that
leads from the goal state to the final state
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2.2 BDI-Agents

Means-end reasoning (2)

Example:
initial state: I am at home, I have a picture, I
have nails, I have no frame and no tools.
goal state: the picture is framed and hangs on
the wall
plan: 1. go to DIY store, 2. acquire a frame
and a hammer, 3. go home, 4. frame the
picture, 5. use hammer and nails to hang the
picture on the wall
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2.2 BDI-Agents

Weighing of competing possibilities

comes from decision theory
competing possibilities are taken as given
weigh the possibilities and decide for one of
them, that is select an option based on the
agent’s utility function which takes into
account beliefs (what the agent knows) and
desires (what the agent wants)
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2.2 BDI-Agents

Weighing of competing possibilities (2)

Example:
desire: have a meal
possibility 1: go to Mensa
possibility 2: go to a fancy restaurant
beliefs: I am low on funds
decision: go to Mensa
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2.2 BDI-Agents

Resource-Boundedness

Agents are resource bounded, that is
they are unable to perform arbitrarily
large computations in the available
time.
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2.2 BDI-Agents

Necessity of BDI
Important characteristics of real-time applications:

1 The environment is nondeterministic, i.e. in each state of
the environment can evolve in several ways.

2 The system is nondeterministic, i.e. in each state there are
potentially several different actions to perform.

3 The system can have several different objectives at the
same time.

4 The actions/procedures that achieve the objectives best are
dependent on the state of the environment and are
independent of the internal state of the system.

5 The environment can only be sensed locally.
6 The rate at which computations and actions can be carried

out is within reasonable bound to the rate at which the
environment evolves.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 109

2 Basic Architectures
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Necessity of BDI II
Nondeterminism of the environment (1) and of the system (2)
imply a formal model:

Branching Tree Structure
Each node is a certain state of the world,

each transition represents a primitive action made by the
system, a primitive event occurring in the environment, or
both,

each branch represents an alternative execution path,

choice nodes are manifestations of the system’s
nondeterminism, and

chance nodes are manifestations of the environments
nondeterminism.
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Branching Tree Structure Example

s0 s1

s2

s3

s4

s5

s6

action
event

both

action

event

action

nodes transitions an exemplary path choice nodes chance nodes
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Selection Function

The branching tree structure requires a selection
function, that selects appropriate actions to
execute from the various available options.

How should the selection function look like?
What should be the right data-structures?
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2.2 BDI-Agents

Necessity of BDI III

Characteristics 4 (best action dependent on
environment-state and independent of internal
system-state), 1 (environment-nondeterminism),
and 5 (local sensing) imply that it is necessary
that there is some component of the system
that can represent the information about the
state of the world.

 Beliefs!
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Necessity of BDI IV

Characteristics 3 (several parallel objectives) and 5
(local sensing) imply that it is necessary that the
system also has information about the
objectives to be accomplished.

 Desires!
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Necessity of BDI V
Idea: reconsider the choice of action at each step.

Dilemma: this is potentially too expensive and the chosen
action might possibly be invalid when selected.

Assumption: it is possible to limit the frequency of
reconsideration and achieve a balance between too much
and not enough reconsideration. Remember characteristic 6
(rate of computations and actions is reasonable).

Implication: it is necessary to include a component of the
system that represents the currently chosen course of
action.

 Intentions!
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2.2 BDI-Agents

Basic Data-Structures (Practice)

Set of beliefs: Usually stored in a belief-base.
Example:

I am a student of computer-science.
I am in my third semester.

Set of goals: Usually stored in a goal-base.
Example:

I want to graduate in computer science.

Set of plans: Recipes of how to reach the
goals. Usually somehow structured, e.g.
nested actions, and stored in a plan-base.
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2.2 BDI-Agents

Basic Data-Structures (Practice) II

Example:
1 Become a bachelor of science.

Attend some lectures.
Succeed in a lot of exams.
Earn a living.

2 Become a master of science.
Attend more lectures.
Succeed in even more exams.
Earn a living.
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Basic Data-Structures (Practice) III

Usually the mental attitudes are based on a
knowledge representation language, e.g.
Prolog.

Beliefs: studies(me,computer_science).
semester(me,3).
Goals: graduate(me,computer_science).
Plan:
[attend(info1),attend(l_algebra),...]
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Agent Control Loop v1

while true do
observe the world;
update the internal world model;
deliberate about what intention to achieve
next;
use means-ends reasoning to get a plan for
the intention;
execute the plan;

end while
 very high-level
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2.2 BDI-Agents

We have to answer three questions

1 Deliberation: How to deliberate? That is
carefully considering and weighing options.

2 Planning: Once committed to something,
how to reach the goal?

3 Replanning: What if during execution of the
plan, things are running out of control and the
original plan fails?
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Agent Control Loop v2

Set<Belief> beliefs = initBeliefBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Intention> intentions =
deliberation(beliefs);
Plan plan = generatePlan(beliefs,intentions);
execute(plan);

}

What is the problem here?
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2.2 BDI-Agents

The philosophy behind

Intentions are the most important things.
Beliefs and intentions generate desires.
Desires can be inconsistent with each other.
Intentions are recomputed based on the
current intentions, desires and beliefs.
Intentions should persist, normally.
Beliefs are constantly updated and thus
generate new desires.
From time to time intentions need to be
re-examined.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 122

2 Basic Architectures
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BDI-Agent Control Loop v3

Set<Belief> beliefs = initBeliefBase();
Set<Intention> intentions = initIntentionBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Desire> desires =
findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
Plan plan = generatePlan(beliefs,intentions);
execute(plan);

}
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Observation

Deliberation has been split into two
components:

1 Generate options (desires).
2 Filter the right intentions.

Intentions can be represented as a stacks
(i.e. priorities are available).
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2.2 BDI-Agents

Observation

An agent has commitments both to
ends: the wishes to bring about, and
means: the mechanism to achieve a
certain state of affairs.

 means-end reasoning.
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What is wrong with our current control loop?

It is overcommitted to both means and
ends. No way to replan if something
goes wrong.
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BDI-Agent Control Loop v4
Set<Belief> beliefs = initBeliefBase();
Set<Intention> intentions = initIntentionBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Desire> desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
Plan plan = generatePlan(beliefs,intentions);
while( !plan.isEmpty() ) {

Action head = plan.removeFirst();
execute(head);
percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
if( !sound(plan,intentions,beliefs) ) {

plan = generatePlan(beliefs,intentions);
}

}
}
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What is a plan?

Plan

A plan π is a list of primitive actions. They
lead, by applying them successively, from
the initial state to the goal state.
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What is a planner?

plan to achieve goal

planner

state of 
environmenttask

intention/
goal/

possible actions
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What is wrong with our control loop?

It is still overcommitted to intentions.
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BDI-Agent Control Loop v5
Set<Belief> beliefs = initBeliefBase();
Set<Intention> intentions = initIntentionBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Desire> desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
Plan plan = generatePlan(beliefs,intentions);
while( !(plan.isEmpty() || succeeded(intentions,beliefs) ||
impossible(intentions,beliefs) ) {

Action head = plan.removeFirst();
execute(head);
percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
if( !sound(plan,intentions,beliefs) ) {

plan = generatePlan(beliefs,intentions);
}

}
}
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What is wrong with our control loop?

It is still limited in the way the agent
can reconsider its intentions.
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BDI-Agent Control Loop v6
Set<Belief> beliefs = initBeliefBase();
Set<Intention> intentions = initIntentionBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Desire> desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
Plan plan = generatePlan(beliefs,intentions);
while( !(plan.isEmpty() || succeeded(intentions,beliefs) ||
impossible(intentions,beliefs) ) {

Action head = plan.removeFirst();
execute(head);
percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
if( !sound(plan,intentions,beliefs) ) {

plan = generatePlan(beliefs,intentions);
}

}
}
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Problems

But reconsidering intentions is costly.

Pro-active vs. reactive

Extreme: stubborn agents, unsure agents.

What is better?
Depends on the environment.

Let γ the rate of world change.

1 γ small: stubbornness pays off.

2 γ big: unsureness pays off.

What to do?
Meta-level control
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BDI-Agent Control Loop v7
Set<Belief> beliefs = initBeliefBase();
Set<Intention> intentions = initIntentionBase();
while( true ) {

Percept percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
Set<Desire> desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);
Plan plan = generatePlan(beliefs,intentions);
while( !(plan.isEmpty() || succeeded(intentions,beliefs) ||
impossible(intentions,beliefs) ) {

Action head = plan.removeFirst();
execute(head);
percept = getNextPercept();
beliefs = beliefRevision(beliefs,percept);
if( reconsider(I,B) ) {

desires = findOptions(beliefs,intentions);
intentions = filter(beliefs,desires,intentions);

}
if( !sound(plan,intentions,beliefs) ) {

plan = generatePlan(beliefs,intentions);
}

}
}
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3. Searching
3 Searching

Problem Formulation
Uninformed search
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3 Searching

Content of this chapter:

Searching: Search Algorithms are perhaps the
most basic notion of AI. Almost any
problem can be formulated as a search
problem.
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3.1 Problem Formulation
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3 Searching
3.1 Problem Formulation

We distinguish four types:
1 1-state-problems: Actions are completely

described. Complete information through
sensors to determine the actual state.

2 Multiple-state-problems: Actions are
completely described, but the initial state is
not certain.

3 Contingency-problems: Sometimes the
result is not a fixed sequence, so the complete
tree must be considered.

4 Exploration-problems: Not even the effect of
each action is known. You have to search in
the world instead of searching in the
abstract model.
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1 2

3 4

5 6

7 8

Table: The vacuum world.
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3.1 Problem Formulation

Definition 3.1 (1-state-problem)
A 1-state-problem consists of:

a set of states (incl. the initial state)

a set of n actions (operators), which – applied to a state –
leads to an other state:

Operatori: States→ States, i = 1, . . . , n

We use a function Successor-Fn: S → 2A×S. It assigns each
state a set of pairs 〈a, s〉: the set of possible actions and the
state it leads to.

a set of goal states or a goal test, which – applied on a state –
determines if it is a goal-state or not.

a cost function g, which assesses every path in the state
space (set of reachable states) and is usually additive.
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Definition 3.2 (State Space)

The state space of a problem is the set of
all reachable states (from the initial
state). It forms a directed graph with the
states as nodes and the arcs the actions
leading from one state to another.
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Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

Table: The 8-puzzle.
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R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Table: State Space for Vacuum world.
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L

R

L R

S

L R
S S

S S

R

L

S S

L

R

R

L

R

L

Table: Belief Space for Vacuum world without sensors.
Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 145

3 Searching
3.2 Uninformed search

3.2 Uninformed search
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Choose, test, expand RBFS

Table: Map of Romania
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3 Searching
3.2 Uninformed search

Principle: Choose, test, expand.
Search-tree

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Map of Romania
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3 Searching
3.2 Uninformed search

Tree Search

function TREE-SEARCH( � � � � � 
 � , � � � � � 
 � � ) returns a solution, or failure
initialize the search tree using the initial state of � � � � � 
 �

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to � � � � � 
 � �

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Table: Tree Search.
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3 Searching
3.2 Uninformed search

Important:

State-space versus search-tree:

The search-tree is countably infinite in contrast
to the finite state-space.

a node is a bookkeeping data structure with
respect to the problem instance and with
respect to an algorithm;
a state is a snapshot of the world.
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3.2 Uninformed search

Definition 3.3 (Datatype Node)
The datatype node is defined by state (∈ S), parent (a node),
action (also called operator) which generated this node,
path-costs (the costs to reach the node) and depth (distance from
the root).

Tree-Search

Important:
The recursive dependency between node and parent is
important. If the depth is left out then a special node root has to
be introduced.

Conversely the root can be defined by the depth: root is its own
parent with depth 0.
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1
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81
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7

8

Node

PARENT− NODE

STATE P COSTATH−  = 6
DEPTH = 6
ACTION  = right

Figure: Illustration of a node in the 8-puzzle.
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3 Searching
3.2 Uninformed search

Instantiating Tree-SEARCH

Design-decision: Queue
Tree-SEARCH generates nodes. Among them are those that
are-to-be-expanded later on. Rather than describing them as a
set, we use a queue instead.
The fringe is the set of generated nodes that have not yet been
expanded.

Here are a few functions operating on queues:

Make-Queue(Elements) Remove-First(Queue)
Empty?(Queue) Insert(Element,Queue)
First(Queue) Insert-All(Elements,Queue)
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3.2 Uninformed search

function TREE-SEARCH( � � � � � � � � 	 � 
 � � � ) returns a solution, or failure

	 � 
 � � �  INSERT(MAKE-NODE(INITIAL-STATE[ � � � � � � � ]), 	 � 
 � � � )
loop do

if EMPTY?( 	 � 
 � � � ) then return failure
� � � �  REMOVE-FIRST( 	 � 
 � � � )
if GOAL-TEST[ � � � � � � � ] applied to STATE[ � � � � ] succeeds

then return SOLUTION( � � � � )
	 � 
 � � �  INSERT-ALL(EXPAND( � � � � , � � � � � � � ), 	 � 
 � � � )

function EXPAND( � � � � � � � � � � � � ) returns a set of nodes

� � � � � � � � � �  the empty set
for each � � � � 
 � � , � � � � � � � in SUCCESSOR-FN[ � � � � � � � ](STATE[ � � � � ]) do

�  a new NODE

STATE[ � ]  � � � � � �
PARENT-NODE[ � ]  � � � �
ACTION[ � ]  � � � 
 � �
PATH-COST[ � ]  PATH-COST[ � � � � ] + STEP-COST( � � � � , � � � 
 � � , � )
DEPTH[ � ]  DEPTH[ � � � � ] + 1
add � to � � � � � � � � � �

return � � � � � � � � � �
Datatype Node

Graph-Search

Table: Tree-Search
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3 Searching
3.2 Uninformed search

Question:
Which are interesting requirements of search-strategies?

completeness
time-complexity
space complexity
optimality (w.r.t. path-costs)

We distinguish:

Uninformed vs. informed search.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 155

3 Searching
3.2 Uninformed search

Definition 3.4 (Completeness, optimality)

A search strategy is called
complete, if it finds a solution, provided there
exists one at all.
optimal, if whenever it produces an output,
this output is an optimal solution, i.e. one
with the smallest path costs among all
solutions.

Is any optimal strategy also complete? Vice versa?
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3.2 Uninformed search

Breadth-first search: “nodes with the smallest depth are
expanded first”,

Make-Queue : add new nodes at the end: FIFO

Complete? Yes.
Optimal? Yes, if all operators are equally expensive.

Constant branching-factor b: for a solution at depth d we have
generated1(in the worst case)

b+ b2 + . . .+ bd + (bd+1 − b)-many nodes.

Space complexity = Time Complexity

1 Note this is different from “expanded”.
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3.2 Uninformed search
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Figure: Illustration of Breadth-First Search.
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Depth Nodes Time Memory

0 1 1 millisecond 100 bytes
2 111 .1 seconds 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 106 18 minutes 111 megabytes
8 108 31 hours 11 gigabytes

10 1010 128 days 1 terabyte
12 1012 35 years 111 terabytes
14 1014 3500 years 11,111 terabytes

Table: Time versus Memory.
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3.2 Uninformed search

Uniform-Cost-Search: “Nodes n with lowest path-costs g(n) are
expanded first”

Make-Queue : new nodes are compared to
those in the queue according
to their path costs and are
inserted accordingly

Complete? Yes, if each operator increases the path-costs by a
minimum of δ > 0 (see below).
Worst case space/time complexity: O(b1+bC

∗
δ
c), where C∗ is the

cost of the optimal solution and each action costs at least δ
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3 Searching
3.2 Uninformed search

If all operators have the same costs (in particular if
g(n) = depth(n) holds):

Uniform-cost search

Uniform-cost search=Breadth-first search.

Theorem 3.5 (Optimality of Uniform-cost search)

If ∃δ > 0 : g(succ(n)) ≥ g(n) + δ then: Uniform-cost
search is optimal.
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3.2 Uninformed search

How to avoid repeated states?

Can we avoid infinite trees by checking
for loops?
Compare number of states with
number of paths in the search tree.
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3 Searching
3.2 Uninformed search

State space vs. Search tree
Rectangular grid: How many different states are reachable within
a path of length d?

A

B

C

D

A

B B

CC CC

A

(c)(b)(a)

Table: State space versus Search tree: exponential blow-up.
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Graph-Search= Tree-Search+ Loop-checking
Tree-Search

function GRAPH-SEARCH( � � � � � � � � 	 � 
 � � � ) returns a solution, or failure

 � � � � � � an empty set
	 � 
 � � � � INSERT(MAKE-NODE(INITIAL-STATE[ � � � � � � � ]), 	 � 
 � � � )
loop do

if EMPTY?( 	 � 
 � � � ) then return failure
� � � � � REMOVE-FIRST( 	 � 
 � � � )
if GOAL-TEST[ � � � � � � � ](STATE[ � � � � ]) then return SOLUTION( � � � � )
if STATE[ � � � � ] is not in  � � � � � then

add STATE[ � � � � ] to  � � � � �

	 � 
 � � � � INSERT-ALL(EXPAND( � � � � , � � � � � � � ), 	 � 
 � � � )

Table: Graph-Search.
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3.2 Uninformed search

Dijkstra’s Algorithm

A
B

S

DE

139555

Given
Graph, Source node in the graph.

Problem
Find the path with lowest cost between source and all other
nodes.
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Concept

A
B

S

DE

A
B

S

DE

A
B

S

DE

A
B

S

DE

A
B

S

DE

A
B

S

DE

A
B

S

DE

0 ∞
∞

∞∞

0 0 + 3
∞

∞0 + 5

0 3
∞

∞5

0 3
3 + 1

3 + 55

0 3
4

6 8 4 + 15

0 3
4

55

0 3
4

55

139515

1 Initial distance value

2 Mark all nodes as unvisited
Set initial node as current

3 Consider all unvisited
neighbors and calculate their
distance

4 After considering all neighbors
of the current node, mark it as
visited.

5 All nodes visited?  finish.
Otherwise:
current node := unvisited node
with the smallest distance

6 Step 3.
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3.2 Uninformed search

Complexity

Worst-Case Performance:
Dijkstra’s original algorithm does not use a
min-priority queue: O(|V |2).
With a min-priority queue implemented by a
Fibonacci heap: O(|E|+ |V |log|V |).
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4. MASSim & The Multi-Agent
Programming Contest

4 MASSim & The Multi-Agent Programming Contest
Introduction
The Scenario
Programming and running the agents
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4 MASSim & The Multi-Agent Programming Contest

Content of this Chapter:

This chapter is about the programming part of the
lecture. We

introduce the Multi-Agent Contest 2011
scenario Agents on Mars;
describe the structure of the agents:
properties, roles, actions, percepts;
motivate how to program and run agents.
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4 MASSim & The Multi-Agent Programming Contest
4.1 Introduction

4.1 Introduction
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4 MASSim & The Multi-Agent Programming Contest
4.1 Introduction

http://www.multiagentcontest.org/

annual competition, started in 2005
Aims to stimulate research in the area of MAS
development and programming by:

1 identifying key problems,
2 collecting suitable benchmarks, and
3 gathering test cases which require and enforce coordinated

action.

participants include researchers from around
the world and developers of the most well
known multi-agent programming platforms.
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4 MASSim & The Multi-Agent Programming Contest
4.1 Introduction

What is MASSim?

a platform for testing and comparing MAS
discrete, step-based simulations of
environments
teams of agents compete against each other
supports different pluggable scenarios
client-server architecture
platform used for the Multi Agent
Programming Contest
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4.2 The Scenario
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

The 2011 Scenario: Mars

In the year 2033 mankind finally populates Mars. While in the
beginning the settlers received food and water from transport ships
sent from earth shortly afterwards —because of the outer space
pirates— sending these ships became too dangerous and expensive.
Also, there were rumors going around that somebody actually found
water on Mars below the surface. Soon the settlers started to
develop autonomous intelligent agents, so-called All Terrain
Planetary Vehicles (ATPV), to search for water wells. The World
Emperor —enervated by the pirates — decided to strengthen the
search for water wells by paying money for certain achievements.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

The Mars Scenario - The tasks of the agents

find the best water wells,
occupy the best zones of Mars,
sabotage the rivals,
defend from sabotages, and
earn money through different achievements,
such as:

inspect certain percentages of the maps,
build zones worth at least some value,
successfully attack a number of opponent agents,
etc.
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4.2 The Scenario

The Mars Map
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

The Mars Map

the map is represented by a graph
numbers on each edge indicate the cost of
traversing that edge
numbers on each node is the score that the
node will earn when part of a zone
the visualization shows the zones conquered
agents must find out characteristics of the map
by exploring and executing specific actions
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Conquering zones

To dominate parts of the map, agents must stand
on specific nodes of the map.

The algorithm for determining map
domination depends on the locations of all the
agents.
The objective is to isolate parts of the map
from the opponent agents!
Agents should choose zones strategically to
maximize the score.
Coordination is required!: an agent can not
build a zone on its own; at least two agents
are needed.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Conquering zones - The algorithm

Consist of three steps:
1 A node with agents belongs to the team that

has the majority (at least half) of the agents in
that node.

2 Nodes that are neighbors of occupied nodes
belong to the team that controls most of those
neighbors node.

3 The previous two step may draw a frontier that
isolates a part of the graph from all the agents
of the other teams: if that is case, the team also
dominates nodes inside that frontier.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Building zones - Example

Figure: Step 1.
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4.2 The Scenario

Building zones - Example (2)

Figure: Step 2.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Building zones - Example (3)

Figure: Step 3.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Building zones - Example (4)

Figure: Breaking a frontier.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Attributes of an agent

Agents have the following numerical attributes:
energy: consumed by performing actions.
health: decreased when attacked.
strength: used when attacking.
visibility range: how far the the agents can
perceive.

These attributes can vary during the simulation.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Available actions
The following actions are available to agents,
depending on the agent’s role:

skip: no action is performed.
recharge: part of the energy is restored.
goto: move to a neighbor node.
attack: decrease health of an opponent agent.
parry: defend oneself against possible attacks.
repair: Restore the health of another
teammate.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Available actions (2)

probe: Find out the value of the current node.
survey: Find out costs of edges connected to
current node.
inspect: Find out current attributes of other
agents in the range.
buy: Exchange achievement points for
improvements in one attribute’s (maximum)
value.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Roles
The agents are heterogeneous!

Each agent assumes one of these roles:
Explorer
Repairer
Saboteur
Sentinel
Inspector

There are two agents of each kind in every team.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

The Explorer

It can: skip, goto, probe, survey, buy, recharge.

Attributes:
Energy (maximum): 12
Health (maximum): 4
Strength: 0
Visibility range: 2
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

The Repairer

It can: skip, goto, parry, survey, buy, repair,
recharge.

Attributes:
Energy (maximum): 8
Health (maximum): 6
Strength: 0
Visibility range: 1
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Roles: The Saboteur

It can: skip, goto, parry, attack, survey, buy,
recharge.

Attributes:
Energy (maximum): 7
Health (maximum): 3
Strength: 4
Visibility range: 1
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Roles: The Sentinel

It can: skip, goto, parry, survey, buy, recharge.

Attributes:
Energy (maximum): 10
Health (maximum): 1
Strength: 0
Visibility range: 3
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Roles: The Inspector

It can: skip, goto, inspect, survey, buy recharge.

Attributes:
Energy (maximum): 8
Health (maximum): 6
Strength: 0
Visibility range: 1
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Disabled agents

When an agent’s health reaches 0, the agent is
disabled:

it does not count for zones building.
only goto, repair, skip, and recharge can be
executed.
the recharging rate is lower.

Disabled agents don’t count for zones! Disabling
an opponent agent may help in building your
own zones or destroying the opponents’.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Achievements

When a team reaches a milestone, its money (a.k.a. achievement
points) is increased.

Possible achievements are:

having zones with fixed values, e.g. 10, 20, etc.

fixed numbers of probed vertices, e.g. 5, 10, etc.

fixed numbers of surveyed edges, e.g. 10, 20, etc.

fixed numbers of inspected vehicles, e.g. 5, 10, etc.

fixed numbers of successful attacks, e.g. 5, 10, etc. or

fixed numbers of successful parries, e.g. 5, 10. etc.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Perceptions

In every simulation step, agents perceive:
state of the simulation: the current step,
state of the team: the current scores and
money,
state of the agent: its internals as described
previously,
visible vertices: identifier and dominating
team,
visible edges: its vertices’ identifiers,
visible agents: its identifier, vertex, team.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Perceptions (2)

Some elements are only perceived after an
specific action. These elements are:

probed agents: its identifier and its value,
surveyed edges: its vertices’ identifiers and
weight, and
inspected agents: its identifier, vertex, team
and internals.
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4 MASSim & The Multi-Agent Programming Contest
4.2 The Scenario

Score
A step score is calculated on every step, summing
up the zones’ scores and the current money.

The final score for the team is the sum of these
step scores:

score =

steps∑
s=1

(zoness + moneys)

Only probed nodes contribute fully to the zone’s
score! (otherwise just 1).
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4.3 Programming and running the agents

4.3 Programming and running the
agents
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

Starting the MASSim Server

Download and uncompress the MAPC 2011
Package from
http://www.multiagentcontest.org/

You can start the MASSim server by invoking this:

$ ./startServer.sh

You will then be prompted to choose a
simulation.
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

The monitor

You can start the monitor to observe the
simulation:

$ ./startMarsMonitor.sh

Click on nodes or agent to see more information
about the element.
Bear in mind that the monitor shows more
information than what agents perceive!
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Figure: The monitor application
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

Connections to the server
Agents run independently from the server. They
communicate with the server by exchanging XML
messages via a socket connection.

The connection is supposed to remain established
(or resumed if lost) during the duration of a
tournament, which consists of three phases:

1 the initial phase,
2 the simulation phase, and
3 the final phase.
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The initial phase

Server Agent

AUTH-REQUEST

AUTH-RESPONSE
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

The simulation-phase

Server Agent
SIM-START

REQUEST-ACTION

ACTION

SIM-END

loop: Simulation Step Cycle
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4.3 Programming and running the agents

Final phase

Server Agent
BYE
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

Simulation state transition
During the simulation step cycle, the state
transition is as follows:

1 collect all actions from the agents,
2 let each action fail with a specific probability,
3 execute all remaining attack and parry actions,
4 determine disabled agents,
5 execute all remaining actions,
6 prepare percepts,
7 deliver the percepts.
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4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

The environment interface
To facilitate managing the connection to the
server, our agents make use of EISMASSim.

EISMASSim is based on EIS, which is a
proposed standard for agent-environment
interaction.
It maps the communication between the
MASSim-server and agents, that is sending
and receiving XML-messages, to
Java-method-calls and call-backs.
It automatically establishes and maintains
connections to a specified MASSim-server.

Prof. Dr. Jürgen Dix Department of Informatics, TUC Multiagent Systems I, SS 2011 207

4 MASSim & The Multi-Agent Programming Contest
4.3 Programming and running the agents

Running the dummy agents

In the software package we have included a single
agent-configuration. It sets up two teams A and B.
Each team has 10 agents.

In order to run the dummy agents, navigate to the
javaagents/scripts directory and execute

$ ./startAgents.sh

You will then be asked to select a configuration.
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4.3 Programming and running the agents

Creating your own agents

In order to create and use your own agents you are required to
perform these steps:

1 create a new agent-class that inherits from
massim.javaagents.Agent,

2 implement a constructor and a couple of required methods,

3 incorporate your new agent-class into the
javaagentsconfig.xml and, if necessary, adapt the
eismassimconfig.xml-file,

4 make sure that your new agent-class is in the class-path, and

5 execute.
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4.3 Programming and running the agents

Creating your own agents 2
The abstract agent class already implements some useful
data structures and methods for implementing BDI agents,
including those for storing goals and beliefs.

The step-method is automatically called by the interpreter
that executes all agents. It is supposed to return an action,
which will then be executed automatically. The
step-method is the place where you are supposed to add
your agent’s intelligence.

Refer to javaagents.pdf and eismassim.pdf, included with
the documentation of the MASSim package, to see the full
listings of available methods, percepts and actions.
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