From testing agent systems to a scalable
simulation platform

Tobias Ahlbrecht, Jiirgen Dix*, and Federico Schlesinger

Department of Informatics
Clausthal University of Technology
Julius-Albert-Str. 4
D-38678 Clausthal-Zellerfeld, Germany
{tobias.ahlbrecht,dix,federico.schlesinger}@tu-clausthal.de

Abstract. Since 10 years our group in Clausthal is organizing the Multi-
Agent Programming Contest, an international contest providing a flexible
testbed for evaluating prototypical implementations of agent systems.
We describe in this paper how the scenarios developed over time, which
lessons we learned, and how this endeavour finally led to the idea of a
scalable multiagent simulation platform. The important conclusion we
draw is the need to move from academic prototypes to more seriously
engineered software systems in order to support the uptake of academic
research in industry.

1 Introduction

The year 1980 marks an important date in knowledge representation and reason-
ing. Artificial Intelligence published a special issue containing three of the most
important papers starting a completely new field: nonmonotonic reasoning. Our
dear colleague, Gerhard Brewka, is working in this area since the mid 80’s and
helped forming the field.

The first two decades have seen an enourmous amount of research which
shed light on the relations and formal properties of many variants of nonmono-
tonic logics. The second author worked for many years on the relation between
logic programming semantics and nonmonotonic reasoning. Two of the most
prevailing goals have always been the following: (1) Define a computable and ef-
ficient formalism to handle commonsense reasoning. (2) Develop an engineering
methodology to apply this formalism to real-world problems.

The gap between theory and practice has been huge in the beginning (it still
is large). While the first goal initiated an impressive amount of work over the
years, the second goal was not taken up with the same devotion.

Interestingly, one of the main researchers in nonmonotonic reasoning, Yoav
Shoham, was also one of the influential people to start in the 90’s another line of

*T would like to express my gratitude for working with Gerd Brewka in the late 80’s
and 90’s, when I started my own research. It was a terrific time!

2 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

research, which led to the ever flourishing area of agent systems (his seminal pa-
per on agent-oriented programming was also published in Artificial Intelligence
in 1993).

The notion of an intelligent agent is perhaps the most important idea in
artificial intelligence in the last four decades and turned out to be extremely
influential in many areas (as evidenced by the recent textbook [10], the AAMAS
conference series and many associated workshops, eg. ProMAS, EMAS, CLIMA,
DALT, AOSE). The question How does an agent take its decisions? is closely
related to classical knowledge representation and reasoning mechanisms: It is
indeed a nonmonotonic procedure. Agents need to reconsider their intentions,
revise their belief in the light of new information, and thus act in a nonmonotonic
fashion.

An important feature is that agents always act in an environment with many
other agents: they are not alone. This led to the introduction of agent pro-
gramming languages. Most of these languages were still in their infancy at the
beginning of this millenium. They were often developed within a PhD or in
similar smaller projects, based on some sort of computational logic. Such im-
plementations were proofs-of-concept, rather than seriously designed software
systems.

In 2004, during one of the CLIMA conferences, the following idea (suggested
by Paolo Torroni and Francesca Toni) came up: to organize an annual inter-
national event as an attempt to stimulate research in the field of programming
multiagent systems by 1) identifying key problems, 2) collecting suitable bench-
marks, and 3) gathering test cases which require and enforce coordinated action
that can serve as milestones for testing multi-agent programming languages,
platforms and tools. In 2014 the competition was organized and held for the
tenth time.

Similar contests, competitions and challenges have taken place in the past few
years. Among them are Google’s AI challengeﬂ the AI-MAS Winter OlympicsEI7
the Starcraft AI Competitionﬂ the Mario AT Championshipﬂ the ORTS competi-
tionP}, the Planning Competitior’} and the General Game Playing Competition[}

The plan for this paper is as follows. In Section [2] we describe our Contest in
more detail. In Section [3| we discuss the lessons we learned. Section [4| (which is
based on joint work published in [3[2]) develops the idea of a scalable multi-agent
simulation platform MASeRaTi that evolved out of (1) our work on the Contest,
and (2) work on traffic simulation of the group led by our colleague in Clausthal,
Jorg Miiller. Finally we draw some conclusions and look into the future.

!nttp://aichallenge.org/

2 http://www.aiolympics.ro/

3 http://eis.ucsc.edu/StarCraftAICompetition
4 http://www.marioai.org/

® http://skatgame.net/mburo/orts/

S http://ipc.icaps-conference.org/

" http://games.stanford.edu/

http://aichallenge.org/
http://www.aiolympics.ro/
http://eis.ucsc.edu/StarCraftAICompetition
http://www.marioai.org/
http://skatgame.net/mburo/orts/
http://ipc.icaps-conference.org/
http://games.stanford.edu/

From testing agent systems to a scalable simulation platform 3

2 The Multi-Agent Programming Contest

The Contest is an international annual event that first took place in 2005. Over
the years, the contest went through well defined episodes, characterized by the
scenarios in which the agents perform and compete. Originally it was designed
for problem solving approaches that are based on formal approaches and com-
putational logics. But this was never a requirement. Indeed in the last few years
we have seen participating teams which programmed entirely in Java or Python.

The trend in the design of the scenarios has been to increase the complexity;
instead of a clever algorithm that solves the scenario (perfect algorithm), we
wanted scenarios in which intelligent agents can and should make use of capabil-
ities such as autonomy, coordination, flexibility, proactiveness and reactiveness,
etc., features that the multi-agent programming paradigm aims to facilitate. We
wanted to evaluate the underlying languages/systems by checking whether they
support such capabilities.

Even though the contest has inspired some interest from other research com-
munities and individuals, the core of the participants belongs to the multi-agent
programming research community, and most of them are designers of multi-
agent languages and platforms, who find in the Contest an excellent test-bed
and benchmark for their own developments.

For this purpose the scenarios are adapted to the state of the art in multi-
agent programming, and do not increase in complexity arbitrarily. Some desired
features for the environments, such as a greater degree of uncertainty (e.g. by
means of actions failing with higher probability, so that learning or nonmonotonic
formalisms are useful), have been put off. While we could certainly put more
emphasis on evaluating such knowledge representation issues in the future, the
available languages currently do not provide enough constructs to deal with these
problems.

2.1 The underlying platform

The first edition of the Contest presented a relatively simple scenario that had
to be implemented in its totality by each participant and delivered as an exe-
cutable for evaluation by the organizers. For the second edition, the MASSim
infrastructure was introduced. MASSim is an extensible simulation server that
provides the environment facilities. Agent programs can connect through the
network to a MASSim server and control simulation level agents; this allowed
the Multi-Agent Programming Contest to be run in a different way: the com-
petitors should only focus on the agents’ design and implementation; agents are
run in the competitors’ own computer infrastructure and connect to a MASSim
instance running in the contest organizer’s infrastructure, in which the scenario
is implemented.

Besides freeing the competitors from dealing with the implementation of the
environment, another key factor provided by MASSim is that agent programs
from different locations can connect to the same simulation, thus enabling com-
petitive scenarios. Since the introduction of MASSim in the 2006 edition, the

4 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

format of the Contest has been that of two teams competing against each other
for performance in each simulation, and the overall winner of the contest defined
by summing up the points after all participants have competed in simulations
against each other, in a regular sports’ tournament fashion.

All simulations are run in a step-by-step manner. In each step all agents
execute their actions simultaneously from the point of view of the server, and
there is a time limit within which agents must choose an action (otherwise they
are regarded as a no-op). In the beginning of each step’s cycle, the server sends
each agent its current percepts of the environment, and waits for the response
that specifies the action to execute. When the responses from all agents are
received or when the timeout limit is reached, all received actions are executed
in MASSim, and the agents’ percepts for the next step are calculated. This cycle
is repeated for a fixed number of steps, and then a winner is decided according
to scenario-specific criteria.

MASSim is fully implemented in Java, and the information exchange with the
agent programs is made through XML messages. It follows a plugin architecture
for the simulations, which makes it easy to design new scenarios on top of it,
as has been the case during the evolution of the Contest. Figure [1| describes this
architecture. The addition of new scenarios does not imply the replacement of
the previous one. Many different scenarios can convive within a single instance
of MASSim, and they can be activated by choosing or modifying configuration
files accordingly.

MASSim Platform

~

Simulation
Plug-in

Simulator

Connection
Manager

/ .
=Y

Fig. 1. The massim infraestructure.

| Java RMI | Visualization

The MASSim package is fully open-source and openly available (https:
//multiagentcontest.org/downloads). It is not only used for the Contest, but

https://multiagentcontest.org/downloads
https://multiagentcontest.org/downloads

From testing agent systems to a scalable simulation platform 5

has also proved useful both for researchers testing their advancements in the field,
and in several classrooms, aiding the teaching of the multi-agent programming
paradigm (https://multiagentcontest.org/massim-in-teaching).

To further ease the development of agents, the MASSim package includes
EIS (http://sf.net/projects/apleis/|), which is a proposed standard for
agent-environment interaction. It maps the communication between MASSim
and the agents (sending and receiving XML-messages to Java-method-calls and
call-backs). On top of that it automatically establishes and maintains connec-
tions to a specified MASSim.

2.2 Previous scenarios

The scenario used for the first edition of the Contest (2005) consisted in a simple
grid in which agents could move to empty adjacent spaces. Food units would
appear randomly through the simulation, and the objective was to collect these
units and carry them to a storage location. This rather simplistic scenario had
to be implemented in its totality by the participants.

The idea was refined for the second edition: Gold Miners. Now the agents
were to collect gold in a competitive environment against other team, and some
obstacles were introduced in the grid to add some navigation complexity. This
scenario, which was also used in the third edition of the contest, was still very
simplistic, and agents acted independently of their teammates, in the solutions
proposed.

For the 2008 edition, a new scenario was designed to enforce coordination
of agents: Cows and Cowboys (Figure . Still using a grid as the underlying
map, the goal for this scenario was to lead a group to a particular area of
the map, representing the team’s own “corral”’, while preventing the opponent
team from doing the same. The cows were animated entities that reacted to the
agents’ positions by trying to avoid them, so solving the map required agents
coordinating their positions in order to lead big groups of cows into the corrals,
whereas a single agent would in most cases disperse the group of cows and fail
to lead them in the desired direction.

The “Cows and Cowboys” scenario was used also in the following two editions
(2009 and 2010), with further refinemets such as the addition of gates that
required explicit coordination: one agent had to stand in a particular position
to keep the gate open while a teammate passed through.

2.3 The Agents on Mars scenario

The Agents on Mars scenario introduced in 2011 and still in use for the 2014
edition was an important step in the contest’s evolution, as it introduced many
innovative features and increased the game’s complexity. The map now takes the
form a weighted graph representing the surface of Mars. The agents represent All
Terrain Vehicles of different kinds, and their goal in the game is to discover the
best water wells by exploring the map and then to keep control of as many wells
as possible, by placing themselves in specific formations that ensure a covering

https://multiagentcontest.org/massim-in-teaching
http://sf.net/projects/apleis/

6 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

Fig. 2. The Cows and Cowboys scenario.

of an area containing the wells while keeping rival agents aside. Figure [3| shows
a screenshot of this scenario.

The agents in this scenario assume different complementing roles, promot-
ing both autonomy and coordination. For example, Ezplorers are in charge of
discovering the water wells, while Saboteurs can attack agents of the opposing
team to temporarily disable some of their capabilities. Repairers are responsible
for restoring its teammates capabilities when they have been attacked, in a coor-
dinated manner. All roles must collaborate to produce the best map coverings.

These agents are much more complex entities than in the previous scenarios.
They have now a rich set of actions to choose from, in contrast with only moving
around the map. Furthermore, they count with a set of internal parameters
that can vary through the simulation—FEnergy, Visibility Range, Health and
Strength—that can affect the choice of available actions: almost every action
that an agent can perform has an associated energy cost; once an agent’s energy
level reaches 0, the only action it can successfully execute is the recharge action. If
an agent is attacked by a rival saboteur, it becomes disabled and cannot execute
its role-specific actions until it is repaired.

Another important feature that was introduced with the Agents on Mars
scenario is the concept of Achievements. By reaching certain predefined mile-
stones (e.g. controlling an area is worth a certain amount of points), teams earn
Achievement points. These can be used in two different ways: either they are
kept to directly contribute to the team’s score, or they can be used as currency
to exchange for improvements to the agent’s internals.

The evolution in the complexity of the scenario has remained on a par with
the evolution of multi-agent programming technologies used by the participating

From testing agent systems to a scalable simulation platform 7

Fig. 3. The “agents on Mars” scenario.

teams. A good quality of the teams has been reached, that ensured interesting
games. Unlike previous scenarios, a strategy that works against every rival has
proven harder to find, and thus the winners are not unbeatable.

2.4 The next scenario

While the 2014 edition on the Multi Agent Programming Contest has just taken
place once again using the Agents on Mars scenario, we are already considering
ideas for a completely new scenario for the next edition in 2015. A very promising
possibility, for which some research has been made in other projects, is a traffic-
simulation kind of scenario, we intend to use map information from real cities.
The actual game to be played in this map is still to be refined.

3 Lessons learned

In this section we will take a deeper look at some observations that we realised
during ten times of hosting the Multi-Agent Programming Contest [54]. Most
of them led to improvements of the contest platform or the employed scenario.
Many lessons we learned are related to engineering issues (as opposed to scien-
tific ones). For example, collecting statistical data or visualizations turned out
to be as important as the choice of the scenarios.

3.1 From gold miners to herding cows

The first lesson we had to learn reaches back all the way to the first Contest in
2005. The agent implementations had to be submitted as an executable system

8 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

and were run locally on the Contest platform. It became clear that a standard
technical infrastructure had to be provided in order to ensure a fair and objective
evaluation of the agent systems and to relieve the participating teams from
having to deal with low-level implementation details. Instead they should focus
on the internal logic of their agents. This finally led to a separation of the
scenario and the agent implementation platform, further trying not to impose
unnecessary constraints on the participants systems.

As already mentioned, we wanted to see agents make use of their distinct
capabilities. It became clear that those features had to be explixitly elicited. Of
those, the two most important were the following:

Cooperation: Clearly, a multiagent platform or framework should be unri-
valled in providing cooperating entities. While it was first believed that
agents would cooperate automatically in order to achieve better results, the
first editions of the Contest proved the contrary. The food gathering and
gold mining scenarios were quite simple and easy to handle by individual
agents. Thus, the subsequent scenarios were designed to enforce rather than
just encourage cooperation, by making it impossible for the agents to win
without seriously coordinating their actions.

Autonomy: Another feature that was not especially required in the first edi-
tions was the autonomy of the agents. It was very much possible to have a
central agent deciding and coordinating the actions of all the other agents
by itself. This, of course, contradicts an agent’s basic characteristics. This
shortcoming has been alleviated to some degree by increasing the number of
agents and the size of the respective scenario, which made it less feasible (or
almost imossible) for one single agent to handle all the information by itself.

From a more technical viewpoint, the Contest has clearly shown that tools for
debugging and testing agent platforms are very important during development.
Indeed, the participants of the first editions of the Contest were more concerned
with debugging rather than with devising good strategies. This became clear
to the participating teams and the agent programming community in general,
making it possible and inviting to put more effort into simplifying those tasks.

Lastly, we realised that the visualization and playability of the respective
scenario is a key to reaching a broader audience, especially students, e.g. when
MASSim is used in teaching in various courses all over the world.

3.2 Mars scenario

Employing the Mars setting, we were again able to obtain a multitude of results
and observations, mostly regarding (1) the usage of multiagent platforms, (2)
the scenario, and (3) several technical issues.

Additionally, we now learned a lot from interviewing the participants, and
gathering statistical data.

From testing agent systems to a scalable simulation platform 9

Usage of multiagent platforms. Employing the Mars domain, we noted an
increasing application of multiagent platforms, i.e. starting with 33% in 2011
and up to 80% in 2013. Also, this scenario has always been won by a dedicated
agent platform and those dedicated platforms seemingly outperform “ad-hoc”
solutions. The presented agent solutions get better from year to year, although
the complexity of the scenario is ever increasing. On the one hand, this can
be attributed to some teams taking part repeatedly, but it also points to an
increasing maturitiy and ease of use concerning multiagent platforms.

Scenario. We saw more coordination within the respective agent teams and of
course more interaction with the opponent teams, which tells us again that the
scenario has to be clearly designed to enforce cooperation and interaction.

Technical issues. As identified earlier, debugging is a key problem in multi-
agent programming. Thus, in the second and third edition of this scenario, we
had to work on our side of the Contest as well and improve the visualization and
feedback that was sent to the agents. This made it easier to at least grasp what
was going on in a simulation, maybe hinting where to start the debugging of the
agents.

Asking the participants. By requiring the participants to answer a predefined
questionnaire [I], we tried to learn not only about the final agent platforms
and the results they produced, but about the whole development process. For
example, we learned why teams participated in the first place. For many, the
motivation was to learn about multiagent systems or to refine their programming
skills concerning them. A lot of teams furthermore shared our goal of evaluating
multiagent frameworks and platforms. Regarding their structure, teams were
composed of students as well as researchers with their background mostly in
MAS or at least artificial intelligence in general.

We also asked the teams how difficult it was and how much effort had to be
put into getting to a point where their system behaved as it finally did. We got
very diverse results, reaching from 150 to 840 person hours and 1000 to 11000
lines of code that had to be written, tested and debugged. This clearly hints at
varying levels of usability concerning different agent platforms.

Furthermore, teams noted that they not only debugged their agents but found
and fixed bugs in the agent framework or platform they used as well, which
shows that the Contest plays an important role concerning the development and
evaluation of different platforms. Nevertheless, the teams are still not satisfied
with the state-of-the-art debugging tools, since it still requires a lot of effort to
debug even 20 agents, each with its own individual mindset.

Not always apparent from the simulation results, we further learned

— which strategies the participants intended to use,
— how they employed different frameworks, and
— how they implemented different features of agent-based systems.

10 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

Also, the teams were able to tell us which development tools they used to which
extent. The most time-consuming task in development still was debugging, or,
if that worked out rather well, coming up with a good strategy.

Gathering statistical data. Lastly, we implemented a new module for the
Mars scenario that allowed us to collect a multitude of statistical data for bet-
ter and faster analysing a simulation once it was completed. Using these data,
we can easily retrace a whole simulation’s progress by looking at the automati-
cally generated charts instead of watching the whole replay, which can be quite
tedious at times. The charts mainly focused on scenario-specific data, like the
development of the score or stability of dominated zones. Furthermore, we were
finally able to directly and easily compare different simulation runs without hav-
ing to keep a lot of details in mind. This showed that better tools for analysing
on our side of the Contest were as important as better debugging tools for the
participants.

For example, in Figure [d] the zone scores of the teams UFSC-SMADAS and
LTI-USP from their third simulation in the 2013 edition of the Contest are given.
One can see that both teams overall managed to increase the size of their zones.
Starting at around step 200, it seems that the USFC team (depicted in green,
having a spike there) gained control of a zone that was formerly dominated by
LTI-USP which suffered a setback with the same size of the spike of USFC.
However, the exchange of control seemingly did not last long, since both scores
quickly return to their original values. One can now easily confirm such an as-
sumption by directly jumping to the right point of the replay.

ZonesScores

BEESE

From testing agent systems to a scalable simulation platform 11

As we have seen, the Mars scenario follows the tradition and improved further
on well-tried concepts while confirming observations made in earlier contests.

3.3 The MASSim platform

Our platform served well over the course of many years in evaluating different
agent platforms and solutions. Especially, developing the EIS standard and ac-
companying EISMASSim implementation [6J9] helped in easily introducing agent
platforms to the MASSim platform.

However, the platform showed certain shortcomings as well. For one point, it
is completely implemented in Java, which is known not to have the performance
of e.g. C++. Additionally, it is difficult, if not impossible, to efficiently parallelize
it and run it on a high performance cluster.

Another bottleneck can be found in the network traffic with its relatively
high communication overhead. This was even a problem for some participants
with less favorable internet connections.

From the point of view of the organizers, decoupling scenario and agent
implementation made possible to exchange scenarios much more easily. However,
the scenario is still hard-coded in Java and hard-wired to the simulation platform,
which, again, makes implementing a new scenario a rather time-consuming task.

All in all, our long-term goal is to evolve MASSim into a platform that
overcomes all these drawbacks. Creating a high performance platform would
allow us to finally analyse and compare agent platforms with respect to their
scalability. One step to reach the goal could be to establish a standard, e.g. in the
spririt of EISMASSim, that enables all agents, and thus the whole Contest, to be
run once again locally on our server. This would certainly free the participants
from having to restart crashed agents during a simulation. It would also introduce
robustness as a new and important requirement for multiagent systems in order
to participate.

4 Large-scale simulation: Maserati

We have seen in the last few years that MASSim is a stable platform able to
coordinate up to a hundred agents quite efficiently (and remotely over the net).
Unfortunately, for reasons that we discuss below, it is not possible to extend
MASSim to handle tens of thousands of agents (or even more). However, in
massive simulations, eg. in traffic, energy or logistics, such numbers of agents
are easily reached. Scaling a microsimulation approach (like MASSim) to large
scenarios is still a challenge.

Nowadays massive simulations, eg. in traffic simulation, are undertaken with
classical analytical models. These models only allow to deal with global prop-
erties, like the throughput or flow-rate. An example is the commercial traffic
simulation platform AIMSuN.

Why can’t we simply integrate AIMSulN with an agent programming plat-
form? This has been undertaken in [7] where it was tried to integrate AIMSulN

12 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

with the well-known agent platform JADE. However, experience showed that

this is extremely difficult and does not work without having access to the source

code of the commercial software product (which is not available in most cases).
So we are left with two extreme approaches:

Micro-view: a massive multiagent based simulation, where each entity is an
agent, or

Macro-view: a commercial product based on analytical models and describing
global properties of the system.

The idea of MASeRaTi is to develop a simulation platform which is inbetween:
it supports both a micro-view as well as a macro-view. Ideally, the designer
should be able to zoom in and turn particular parts of the system into agents (if
such a detailed view is needed), or to rely on global parameters for other parts
(there are some similarities to the notion of a view in databases). Often there
are questions where the additional overhead to deal with a micro-view is not
needed. Thus it would be appropriate not to be forced to deal with it.

MASeRaTi, currently being developed in the DeSIM projectﬂ at TU Clausthal,
is a distributed MABS platform that aims at high scalability for networked sim-
ulations of systems-of-systems, e.g. in traffic and transport. It will be capable of
running simulations containing a vast number of software agents.

This section should give the reader a bird’s eye view of MASeRaTi. For
details we refer to [2] and [3] (where parts of this section were taken from).

The MASeRaTi platform combines several promising features from different
areas in one integrated system.

Architecture: Its architecture, in particular communication and the simulation
cycles, are inspired by the architectures of massively multiplayer online role-
playing games (MMORPG): All simulation objects are split into two disjoint
sets, synchronized and non-synchronized objects. Synchronized objects are
for instance the simulation world (also called area) or objects situated within,
because these objects must be consistent over all nodes of the HPC. Other
objects, e.g. agents, are defined as non-sychronized objects, allowing to be
transferred to other nodes.

Scalability: We use high-performance computing algorithms with the message-
passing-interface (MPI), so that we can use scalable structure with a high
performance datalink between the cluster nodes (in the future, a P2P overlay
can be used). Scalability is achieved by splitting the simulation objects into
disjoint sets, so that we can design a distributed system with an optimization
process for calculation.

Lua: We define an abstract agent model for an agent programming interface in
Lueﬂ which can be extended or fully redefined by the programmer.

The overall MASeRaTi architecture consists of three layers, see Fig.

8 http://simzentrum.de/en/projects/desim
9 http://www.lua.org/

http://simzentrum.de/en/projects/desim
http://www.lua.org/

From testing agent systems to a scalable simulation platform 13

{Scenario layer (SL)

’Agent-model layer (AML)

Simulation

Micro-kernel (MK)

[Simulation | N i
Object
A

[eo

Synchronized Object
< Acce:
\V/

log | -Type
l S o \V/
Lua Binding =1 P Object [ssType |
% E :
yAN

Fig. 5. Overview of the MASeRaTi architecture

Micro-kernel (MK): Written in C++, this layer facilitates parallelization over
a HPC using structure, scheduler, scaling and optimization features of the
message passing interface (MPI) library. A plug-in interface allows to replace
MPI by alternative communication technologies like BitTorrent.

Agent model layer (AML): The agent model layer defines an object-orien-
ted model of a multiagent based simulation. Micro-kernel classes and objects
are mapped into this layer, extending the existing structures. Lua is used as a
modeling language because of its flexibility (imperative, object-oriented and
functional programming) and its property of being interpreted at runtime.

Scenario layer (SL): This layer defines instances of an AML, adding domain-
specific entities and behavioural models, e.g., for traffic simulation.

The reason for using Lua as the modeling language in the AML is twofold:
Firstly, it has a very small interpreter (around 100kByte) written in native C.
Secondly, C/C++ data structures can be pushed into the Lua interpreter at
runtime with a native pointer structure, so we can easily extend Lua. The linkage
between MK and AML is defined by Lua binding frameworks, e.g. Lua Bridgﬂ

Finally, the simulation layer implements a simulation as an instance of the
AML. A native Prolog interpreter is provided for reasoning tasks (e.g., for the
belief base). One can also store Lua functions in it. Area structures like graph or
grid systems can be added with the Data-Type interface. Such a data type models
a certain structure (like a grid, a graph etc.) and implements the corresponding
search algorithms such as Dijkstra’s, A* and D*.

The process of engineering (i.e., modeling and running) a simulation is geared
to exploit the structure of the MASeRaTi platform. The platform itself runs on
a HPC system enabling large sets of experiments. The steps of the process are
illustrated in Fig. [6]

After each iteration, the developer should be able to test her prototype by
creating a request for computation (Step 4). The HPC system instantiates this

10 https://github.com/vinniefalco/LuaBridge

https://github.com/vinniefalco/LuaBridge

14 Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

1. Create scenario 2. Define scenario 3. Define variables for
structure parameters evaluation J S

Cl. Send computational taslﬁ

to HPC

change parameters >L change variables

change scenario

wait for the results

change parameters R
9e P 5. Receive results
change scenario

@< T 6. Analyse data

change variables

Fig. 6. Simulation engineering process

task, creates child processes and calculates the outcome. While the simulation
is running, one can create another instance or a completely new scenario and
add the task to the queue. Finally, in Step 5 and 6 the evaluation data of a
simulation is processed by the client and additional analyses are made.

Due to the revision control system of the database, a scenario can run with
different parameters and input data and the resulting datasets can be compared.
The architecture is split into client and server parts, which communicate via the
database. The database stores all scenario data into a repository, so the full
developing process is being logged. A task can be seen as a current state of a
repository with fixed parameters and input data. This mechanism enables the
possibility to supervise and summarize the results of different tests.

Figure [7] sketches a user interface to support the simulation engineering pro-
cess. The interface will be realised by techniques used in today’s web browsers, so
that each user can add modeling or analysing features to the system. The client,
which can run small simulations, uses Qt QML |E| to create a browser interface.
We plan to add components for visualization like Data-Driven Documentﬂ or

Chart.j ﬂ

5 Conclusions

An important outcome, or rather insight, of the second author’s work on logic
programming and knowledge representation in the 90’ies is the following. While
basic research flourished and produced many important results on the relation
between various formal systems and on the complexity and expressivity of many

" http://qt-project.org/doc/qt-5.0/qtqml/qtqml-index . html
12 http://d3js.org/
13 http://www.chartjs.org/

http://qt-project.org/doc/qt-5.0/qtqml/qtqml-index.html
http://d3js.org/
http://www.chartjs.org/

From testing agent systems to a scalable simulation platform 15

Torary Source Editor Model Editor

agent-model ayer — MoveEfrector Clas

> agentt 3 self. entity = entity
> agent2 self,_area = area Transtorm |
v sensors 94| end [_ranstorm

v effeciors ,
> e v function Movetfector:perfornkction(nane, paraseters)

Visualization

" = “move" then
> move sv) if parameters.direction ~= nil and type(parameters.direction) == "string" then
> push 6 Tocal d = parameters. direction

el 17y if d == "east" then

st then

vvvy

x=1
elseif ¢ =

“south” then

y=1
elseif d = "north" then

156y if not(x==0 and y==0) then
157 Tocal entity
Tocal entity
if self._are; tityX, ent
self._area.setPosition(entity, x, y)

Proxinitysensor Class
ProximitySensor = class(CSensor)

v function ProximitySensor:_init(entity, area)
s = entity

ility range
ProxmitySensor. vian

179+ function Proxinityse Percepts()
Tocal entityX = getPosition(self. entity).x
Tocal entity) getPosition(se .y
return self._arca.getobjectsAround(x, y, vRange)

Image 82014 Google Maps

Fig. 7. Ul Wireframe

semantical systems, it did not account for developing a methodology to apply
these systems to the real world (or at least to nontrivial applications). The rea-
son is simply that such methodologies are by many considered not scientifically
valuable and thus it is difficult to get publications out of such work. The engi-
neering component, which is invaluable for a potential serious implementation of
a running system, is time-consuming yet the scientific content is low (given that
the original theoretical results have already been published).

But the uptake of basic research in industry heavily depends on well-developed
methodologies and seriously crafted software systems (as opposed to prototypes
developed within PhD projects). Building such systems requires many person
years and is almost never done within an academic environment.

The shift from logic programming semantics to answer set programming,
seen as a paradigm to encode problems on the second level of the polynomial
hierarchy and solve them with appropriate solvers, was of utmost importance.
But without applications and ASP systems developed and improved along such
applications it would have been nothing but an academic toy.

There are some similarities to the area of agent programming. As mentioned
above, in the first few years agent programming languages developed in academia
did only have premature (if any) debugging tools (and many more classical
software tools were missing). The Multi-Agent Programming Contest helped, on a
modest level, to improve some of the languages. But it addressed only relatively
small problems/scenarios. As in the case of ASP, we need more engineering
and we must take scalability seriously. This is what we have tried to do with
MASeRaTi.

16

Tobias Ahlbrecht, Jiirgen Dix, and Federico Schlesinger

With an initial version of MASeRaTi including first scalability tests being

available [2], future work in DeSIM will focus on optimizing the platform and
increasing its runtime performance, e.g. by a more flexible distribution model,
and by more sophisticated agent scheduling algorithms.

A key activity in this respect would be supporting collaborative modeling

done by distributed teams of modelers including appropriate methodologies,
tools, modeling abstractions, and libraries.

References

1.

10.

Tobias Ahlbrecht, Christian Bender-Saebelkampf, Maiquel de Brito, Nicolai Chris-
tian Christensen, Jirgen Dix, Mariana Ramos Franco, Hendrik Heller, An-
dreas Viktor Hess, Axel HefBller, Jomi Fred Hiibner, Andreas Schmidt Jensen,
Jannick Boese Johnsen, Michael Késter, Chenggian Li, Lu Liu, Marcelo Menezes
Morato, Philip Bratt @rum, Federico Schlesinger, Tiago Luiz Schmitz, Jaime Sim
ao Sichman, Kaio Siqueira de Souza, Daniela Maria Uez, Jorgen Villadsen, Sebas-
tian Werner, @yvind Grgnland Woller, and Maicon Rafael Zatelli. Multi-agent pro-
gramming contest 2013: The teams and the design of their systems. In Cossentino
et al. [§], pages 366-390.

Tobias Ahlbrecht, Jiirgen Dix, Michael Késter, Philipp Kraus, and Jorg P. Miiller.
A scalable runtime platform for multiagent-based simulation. Technical Report
IfI-14-02, TU Clausthal, February 2014.

Tobias Ahlbrecht, Jiirgen Dix, Michael Koéster, Philipp Kraus, and Joérg P. Miiller.
A scalable runtime platform for multiagent-based simulation. In Fabiano Dalpaiz,
Jirgen Dix, and Birna van Riemsdijk, editors, Engineering Multi-Agent Systems -
Second International Workshop, EMAS 2014, Paris, France, May 5-7, 201/, Re-
vised Selected Papers, volume 8758 of Lecture Notes in Computer Science. Springer,
2014.

Tobias Ahlbrecht, Jiirgen Dix, Michael Koster, and Federico Schlesinger. Multi-
agent programming contest 2013. In Cossentino et al. [8], pages 292-318.

Tristan M. Behrens, Mehdi Dastani, Jiirgen Dix, Michael K&ster, and Peter Novak.
The multi-agent programming contest from 2005-2010 - from gold collecting to
herding cows. Ann. Math. Artif. Intell., 59(3-4):277-311, 2010.

Tristan M. Behrens, Koen V. Hindriks, and Jiirgen Dix. Towards an environment
interface standard for agent platforms. Ann. Math. Artif. Intell., 61(4):261-295,
2011.

Viet-Hung Chu, Jana Gormer, and Jorg P. Miiller. ATSim: Combining AIMSUN
and Jade for agent-based traffic simulation. In Proc. 14th Conference of the Spanish
Association for Artificial Intelligence (CAEPIA), volume 1. AEPIA, 2011. Elec-
tronic Proceedings.

Massimo Cossentino, Amal El Fallah-Seghrouchni, and Michael Winikoff, editors.
Engineering Multi-Agent Systems - First International Workshop, EMAS 2013, St.
Paul, MN, USA, May 6-7, 2013, Revised Selected Papers, volume 8245 of Lecture
Notes in Computer Science. Springer, 2013.

Koen Hindriks and Jiirgen Dix. Goal: A multi-agent programming language applied
to an exploration game. In Onn Shehory and Arnon Sturm, editors, Research
Directions Agent-Oriented Software Engineering, pages 112-136. Springer, 2013.
Gerhard Weiss. Multiagent Systems. The MIT Press, 2013.

	From testing agent systems to a scalable simulation platform

