
Agent Contest Competition - 3rd
edition
Mehdi Dastani1, Jürgen Dix2 and Peter Novák2

IfI Technical Report Series IfI-07-15



Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Wojciech Jamroga
Contact: wjamroga@in.tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI ReviewBoard

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelli-
gence)
Prof. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Kai Hormann (Computer Graphics)
Prof. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Economical Computer Science)
Prof. Dr. Niels Pinkwart (Economical Computer Science)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Computer Science)
Prof. Dr. Gabriel Zachmann (Computer Graphics)



Agent Contest Competition - 3rd edition

Mehdi Dastani1, Jürgen Dix2 and Peter Novák2

1Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

mehdi@cs.uu.nl
2Clausthal University of Technology

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
{dix|peter.novak}@tu-clausthal.de

Abstract

This paper summarises the Agent Contest 2007 which was organized in
association with ProMAS’07. The aim of this contest is to stimulate re-
search in the area of multi-agent systems by identifying key problems
and collecting suitable benchmarks that can serve as milestones for eval-
uating new tools, models, and techniques to develop multi-agent sys-
tems. The first two editions of this contest were organized in association
with CLIMA conference series. Based on the experiences from the previ-
ous two editions ([8, 9]), the contest scenario has been slightly extended
to test the participating multi-agent systems on their abilities to coordi-
nate, cooperate, and their team work and team strategy issues in a dynamic
environment where teams compete for the same resources. Six groups
from Germany, Brazil, England, Australia and The Netherlands did par-
ticipate in this contest. The actual contest took place prior to the Pro-
MAS’07 workshop and the winner, a group from the technical university
of Berlin, was announced during ProMAS’07.

1 Introduction

Multi-agent systems are beginning to play an important role in today’s soft-
ware development. In the field of agent-oriented software engineering, var-
ious multi-agent system development methodologies have been proposed.
Each methodology focuses on specific stages of the multi-agent system de-
velopment. For example, Gaia [12] and Prometheus [10] focus on the spec-
ification and design stages assuming that other stages such as requirement
and implementation are similar to corresponding stages of other software
development paradigms. Therefore, software developers using Gaia and Pro-
metheus propose models to specify and design multi-agent systems, while
ignoring the implementation models.

1



Introduction

Moreover, there is a growing number of agent-oriented programming lan-
guages and development platforms that are proposed to facilitate the imple-
mentation of multi-agent systems. These programming languages and plat-
forms introduce programming constructs that can facilitate efficient and ef-
fective implementation and execution of multi-agent systems. The devel-
opment of multi-agent systems requires efficient and effective solutions for
different problems which can be divided into three classes: 1) the problems
related to the development of individual agents, 2) the problems related to
the development of coordination and cooperation mechanisms to manage
the interactions between individual agents, and 3) the problems related to
the development of the shared environment in which agents perform their
actions.

Typical problems related to individual agents are how to specify, design
and implement issues such as autonomy, pro-active/reactive behaviour, percep-
tion and update of information, reasoning and deliberation, and planning. Typical
problems related to the interaction of individual agents are how to specify,
design and implement issues such as communication, coordination, coopera-
tion and negotiation. Finally, typical problems related to the development of
their environment are how to specify, design and implement issues such as
resources and services, agents’ access to resources, active and passive sensing of
the environment, and realizing the effects of actions.
This competition is an attempt to stimulate research in the area of multi-
agent systems by

1. identifying key problems in developing multi-agent systems, and

2. evaluating state-of-the-art tools, models, and techniques in the field of multi-
agent systems.

While there already exist several competitions in various areas of artifi-
cial intelligence (theorem proving, planning, Robo-Cup, etc.) and, lately,
also in specialized areas in agent systems (Trading Agent Competition (TAC)
[1] and AgentCities competitions [2]), the emphasis of this contest is on the
use of existing tools, models, and techniques that are proposed to develop
multi-agent systems ([3, 7, 4]. In particular, we aim at evaluating existing
approaches for the development of multi-agent systems where individual
agents has to cooperate with each other to solve a task. In this respect, is-
sues such as team working, team strategy, interaction with dynamic envi-
ronment, modeling the environment, limited perception, uncertain action
effects, reasoning and planning, and learning are essential.

The previous editions of this contest were organized in cooperation with
CLIMA workshop series. The scenario from this year can be seen as an exten-
sion of the scenario from the CLIMA VII Contest 2006. The main differences
include:

DEPARTMENTOF INFORMATICS 2



AGENT CONTEST COMPETITION - 3RD EDITION

• perception now includes also the information about the number of
gold items an agent carries,

• number of agents per team is 6, instead of 4 last year,

• agents can push each other,

• agents can collect and carry more gold items,

• each agent has to connect to the server from a separate IP address (this
requirement might be a subject of change).

We believe that these extensions lead to a greater competitiveness of the sce-
nario (the fun factor should not be underestimated) and put the participat-
ing multi-agent systems under a test w.r.t. coordination and cooperation is-
sues in an environment where teams compete for the same resources.

2 Scenario Description

The competition task consisted of developing a multi-agent system to solve a
cooperative task in a dynamically changing environment. The environment
of the multi-agent system was a grid-like world where agents could move
from one cell to a neighbouring cell. In this environment, gold could appear
in the cells. Participating agent teams were expected to explore the environ-
ment, avoid obstacles and compete with another agent team for the gold.
The agents of each team could coordinate their actions in order to collect as
much gold as they could and to deliver it to the depot where the gold can be
safely stored. Agents had only a local view on their environment, their per-
ceptions could be incomplete, and their actions could fail. The agents were
able to play different roles (such as explorer or collector), communicate and
cooperate in order to find and collect gold in an efficient and effective way.

The idea was to divide participating agent teams randomly into groups be-
fore the tournament started. Each team from one group should then com-
pete against all other teams in the same group in a series of matches. The
winners from these groups should form a new group and each team in a
new group should play against each other again. In the case of few partic-
ipating teams, we had planned to form only one single group consisting of
all teams. Because of the number of participants, we decided to form only
one group for this edition of the agent contest. Each team competed against
all other teams in a series of matches. Each match between two compet-
ing teams consisted of five simulations. A simulation between two teams
was a competition between them with respect to a certain starting configu-
ration of the environment. Winning a simulation yielded three points for
the team, a draw was worth one point and a loss resulted in zero points. The
winner of the whole tournament was evaluated on the basis of the overall

3 Technical Report IfI-07-15



Scenario Description

number of collected points in the matches during the tournament. In the
case of equal number of points, the winner should be decided on the ba-
sis of the absolute number of collected gold items. Details on the number
of simulations per match and the exact structure of the competition was
published prior to the Contest on the official Agent Contest 2007 website
at http://cig.in.tu-clausthal.de/AgentContest2007/.

2.1 Technical Description of the Scenario

In the contest, the agents from each participating team were executed lo-
cally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams performed actions, was run on the
remote contest simulation server run by the contest organizers. The interac-
tion/communication between agents from one team were managed locally,
but the interaction between individual agents and their environment (run
on the simulation server) took place via Internet. Participating agents were
connected to the simulation server that did provide the information about
the environment. Each agent from each team connected to and communi-
cated with the simulation server using TCP protocol and messages in XML
format.

During the initial phase1 agents from all competing teams connected to
the simulation server, identified and authenticated themselves and got gen-
eral match information. Each agent had to connect to the simulation server
from a separate IP address. Teams not obeying this rule would have been
disqualified and disconnected from the simulation server during the tour-
nament. At the announced start time of the tournament, the simulation
server was on-line and the agents from participating teams were able to con-
nect to it. After a successful initial handshake during which agents identified
themselves by their IDs and received acknowledgment from the server, they
waited for the simulation start. The initial connecting phase took a reason-
able amount of time in order to allow agents to be initialised and connected
(15 minutes).

The simulation server controlled the competition by selecting the com-
peting teams and managing the matches and simulations. In each simula-
tion, the simulation server, in a cyclic fashion, provided sensory informa-
tion about the environment to the participating agents and expected their
reactions within a given time limit. Each agent reacted to the received sen-
sory information by indicating which action (including the skip action) it
wants to perform in the environment. If no reaction was received from the
agent within the given time limit, the simulation server assumed that the
agent performed the skip action. Agents had only a local view on their en-

1The contest organizers contacted participants before the actual tournament and provided
them the IDs necessary for identification of their agents for the tournament.

DEPARTMENTOF INFORMATICS 4

http://cig.in.tu-clausthal.de/AgentContest2007/


AGENT CONTEST COMPETITION - 3RD EDITION

vironment, their perceptions could be incomplete, and their actions could
fail. After a finite number of steps the simulation server stopped the cycle
and participating agents received a notification about the end of a simula-
tion. Then the server started a new simulation possibly involving the same
teams.

2.2 Team,Match, and Simulation

An agent team consisted of six software agents with distinct IDs. There were
no restrictions on the implementation of agents, although we encouraged
the use of approaches based on the state-of-the-art tools, methodologies and
languages for programming agents and multi-agent systems, as well as the
use of computational logic based approaches. The tournament consisted of
a number of matches. A match was a sequence of simulations during which
two teams of agents competed in several different settings of the environ-
ment. For each match, the server 1) picked two teams to play it and, sub-
sequently, 2) started the first simulation of the match. Each simulation in
a match started by notifying the agents from the participating teams and
sending them the details of the simulation. These included for example the
size of the grid, the depot position, the number of steps the simulation will
perform, etc. A simulation consisted of a number of simulation steps. Each
step consisted of 1) sending a sensory information to agents (one or more)
and 2) waiting for their actions. In the case that an agent did not respond
within a timeout (specified at the beginning of the simulation) by a valid
action, it was considered to perform the skip action in the given simulation
step.

2.3 Environment objects

The (simulated) environment was a rectangular grid consisting of cells. The
size of the grid was specified at the start of each simulation and was vari-
able. However, it was always at most 100x100 cells. The [0,0] coordinate of
the grid was in the top-left corner (north-west). The simulated environment
contained one depot, which served for both teams as a location of delivery
of gold items. The environment did contain the following objects in its cells:

• an obstacle (a cell with an obstacle cannot be visited by an agent),

• gold (an item which can be picked from a cell) agent,

• an agent,

• the depot (a cell to which gold items are to be delivered in order to earn
a point in a simulation),

5 Technical Report IfI-07-15



Scenario Description

• a marker (a string data with a maximum of 5 characters which can be
read/written/ rewritten/removed by an agent).

There could be only one object in a cell, except that an agent could enter
cells containing gold, depot or mark. A gold item could be in a marked cell
visited by an agent. At the beginning of a simulation the grid contained ob-
stacles, gold items and agents of both teams. Distribution of obstacles, gold
items and initial positions of agents was either hand crafted for the particu-
lar scenario, or completely random. During the simulation, gold items were
appearing randomly in empty cells of the grid. The frequency and probabil-
ity of gold generation was simulation specific, however not known to neither
agents, nor participants. At the start of each simulation agents got the details
of the environment (grid size, depot position, etc.). Agents also received in-
formation about their initial position in the perception information of the
first simulation step.

2.3.1 Perception

Agents were located in the grid and the simulation server provided each agent
with the following information:

• the absolute position of the agent in the grid,

• the content of the cells surrounding the agent and the content of the
cell in which the agent currently stands in (9 cells in total),

• the number of gold items the agent currently holds.

If two agents were standing in each other’s field of view, they were able to
recognize whether they are enemies, or whether they belong to the same
team. However an agent was not able to recognise whether the other agent
carries a gold item or not. If there was a mark in a cell, within the agent’s
field of view, the agent also received the information about its content.

2.3.2 Actions

Agents were allowed to perform one action in a simulation step. The follow-
ing actions were allowed:

• skip: The execution of the skip action had no influence on the local
state of the environment around the agent (under the assumption that
other agents did not change it). When an agent did not respond to a
perception information provided by the simulation server within the
given time limit, the agent was considered as performing the skip ac-
tion.

DEPARTMENTOF INFORMATICS 6



AGENT CONTEST COMPETITION - 3RD EDITION

• movements (right, up, left, down): An agent could move in four
directions in the grid. These movement actions were specified as fol-
lows. The execution of move actions up, down, left and right changes
the position of the agent one cell to the up, down, left, and right, re-
spectively. A movement action succeeds only when the cell to which
an agent is about to move does not contain an obstacle. In the case
two agents stand in adjacent cells and one of them tries to step into
the cell the second agent stands in while the second agent performs
e.g. skip action, the second agent can be pushed away. The resulting
local change of the environment amounts to the same situation as if
the pushed agent performed a move action in the same direction as the
pushing agent. The same constraints as for regular move actions apply,
i.e. there cannot be another obstacle, or an agent standing in the way
of the pushed agent. Only one agent can be pushed in one move. In the
case both agents standing in the adjacent cells try to push each other,
one of them will be randomly determined (with probability of 50%) as
the pushing and the other as the pushed agent. A detailed specification
of the action execution algorithm later in this paper describes further
details of push action and its consequences. Moving to and from the
depot cell were regulated by additional rules described later in this de-
scription.

• pick, drop: An agent could carry up to maximum of three gold items
which it successfully picked up before. An agent could pick up a gold
item if 1) the cell in which the agent stands in contains gold, and 2)
the agent carries less than 3 gold items. An agent could drop gold item
it carried only into the empty cell it stood in. The result of a success-
ful pick action is that in the next simulation step the acting agent will
be considered to carry one more gold item than before performing the
pick action and the cell, it stands in, will not contain the gold item any
more. The result of a drop action is that the acting agent is carrying one
gold item less than before performing the drop action (given that the
agent was carrying at least one gold item in that simulation step) and
that the cell it stands in will contain the gold item in the next simula-
tion step. Drop action performed in the depot cell results in dropping
all the gold items the agent carries at once and increases the score of the
agent’s team by a number of points equal to the number of gold items
the agent dropped in the depot cell. The depot cell never contains a
gold item that can be picked by an agent.

• mark, unmark: An agent was allowed to mark a cell it stood in by a
string data with a maximum of 5 characters. The result of a mark ac-
tion is that the cell in which an agent is located, will contain a string
in the next simulation step. The depot cell, and cells containing an ob-
stacle cannot be marked. By marking a previously marked cell, the old

7 Technical Report IfI-07-15



Scenario Description

mark is removed and replaced by the new one. If the cell in which an
agent is located, contains a mark, then the agent receives the string in
the perception information from the simulation server. An agent was
allowed to unmark the marked cell it stood in. The result of an unmark
action is that the cell will not contain a mark in the next simulation
step. Agents do not get immediate feedback on their actions, but can
learn about the effects of their actions (and the actions of other agents)
from the perception information that will be sent to them in the next
simulation step.

2.3.3 Action Execution Algorithm

After the simulation engine collected the actions that the agents chose to ex-
ecute in the next simulation step (or the simulation step timeout for agent’s
reaction elapsed), the next state of the environment was determined as fol-
lows:

1. all the agents’ impossible actions were replaced by skip actions. An im-
possible action is:

• the move action when the agent tries to step into an obstacle, or
out of the grid boundary, or

• the drop action when the cell already contains gold, or

• the pick action when there’s no gold contained in the cell, or

• the unmark action when the cell does not contain a mark;

2. the simulation engine determined actions which will fail because of
Fatigue (see description below) and replaces them with a skip action;

3. for each cell not containing an agent, or an obstacle, such that there’s
at least one agent indicating an intention to move into it, one of these
agents was selected and moved to this cell. Actions of all the other con-
sidered agents were replaced with a skip action;

4. for each agent which can be pushed by more than one pushing agent
(an agent can be pushed iff it is about to perform a skip action [after
applying steps 1-3], the cell it is going to be pushed into is within the
grid boundary and does not contain an agent, or an obstacle), one such
pushing agent was selected, and both pushed and pushing agents were
moved in the direction of the move of the pushing agent;

5. all other move actions which were not executed in steps 3 and 4 were
replaced by skip action;

6. all the non-move actions were executed;

DEPARTMENTOF INFORMATICS 8



AGENT CONTEST COMPETITION - 3RD EDITION

7. further internal changes and calculations of the environment, like e.g.
gold generation, took place.

2.3.4 Depot cell

Strong conditions were imposed on the depot cell:

1. an agent not carrying a gold item was unable to enter the depot cell (the
result of such an action is the same as if the depot was an obstacle);

2. agent which entered the depot cell should drop the gold item as the
very next action it executed;

3. after dropping the gold item in a cell, an agent had to leave the cell
in the first subsequent simulation step when it was able to move (i.e.
when there was an empty cell at the time of agent’s move action).

If an agent did not leave the depot in the first possible opportunity, or
did not drop the gold item as the very next action after entering the depot,
the simulation server punished it by “teleporting” it away (it was moved to
a random cell not containing another agent, or obstacle in the grid by the
environment simulator).

2.3.5 Timeout

The agents had to inform the simulation server which action they wanted
to perform within a timeout specified at the beginning of the simulation.
Timeouts were set reasonably high, so that even participants with a slow
network connection and complex deliberation algorithms were able to com-
municate with the server in an efficient way. Simulation timeouts were not
lower than two seconds and higher than 10 seconds per one simulation step.

A ping interface was provided by the server in order to allow participating
agents to test the speed of their connection during the initial phase of the
tournament. Note, that only a limited number of ping requests were pro-
cessed from one agent in a certain time interval.

2.3.6 Fatigue (InformationDistortion/Action Failure)

Agents received incomplete information about the environment from the
simulation server. The simulation server could omit information about par-
ticular environment cells, however, the server never provided incorrect in-
formation. Also, agent’s action could fail. In such a case the simulation
server evaluated the agent’s action in the simulation step as a skip action.

Both the probability of sending an agent incomplete information (Pinf )
and the probability of agent’s action failure (Pfail) were constant and specific

9 Technical Report IfI-07-15



Scenario Description

for each simulation, however not higher than 20%. Moreover, both proba-
bilities increase in a linear fashion with respect to the number of gold items
currently carried by the agent up to at most 50%. The equation regulating
this relation was as follows:

p = Psim +
Pmax − Psim

NitMax
×Nit

Here, P stands for the actual probability of action failure, or information
distortion w.r.t. number of items the agent currently carries, Psim is the prob-
ability of action failure/information distortion set as default for the current
simulation (it is equal to the corresponding probability when agent does not
carry a gold item). Pmax and NitMax are the maximal value of failure/information
distortion probability (at most 50%) and maximal number of gold items the
agent is allowed to carry (3 as specified above) respectively. These values, to-
gether with Psim (at most 20%) are parameters of each current simulation.
Finally Nit stands for the number of gold items the agent currently carries.

Below we list examples of two simulation settings together with tables of
resulting probabilities for agent carrying 0, 1, 2 and 3 gold items:

Psim = 10% Psim = 5%
Pmax = 50% Pmax = 40%
NitMax = 3 NitMax = 3

Nit - P Nit - P
0 - 10.0% 0 - 5.0%
1 - 23.3% 1 - 16.6%
2 - 36.6% 2 - 28.3%
3 - 50.0% 3 - 40.0%

Simulation parameters Psim, Pmax are not known neither to agent team
designers, nor to the agents during the simulation. As already mentioned
above, NitMax is a constant set to 3 for all simulations in the tournament.

2.3.7 Final Phase

In the final phase, the simulation server sent a message to each agent allow-
ing them to disconnect from the server. By this, the tournament was over.

2.4 GeneralAgent-2-ServerCommunicationPrinciples

In this contest, the agents from each participating team were executed lo-
cally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams performed actions, was run on the
remote contest simulation server. Agents communicated with the contest

DEPARTMENTOF INFORMATICS 10



AGENT CONTEST COMPETITION - 3RD EDITION

server using standard TCP/IP stack with socket session interface. The In-
ternet coordinates (IP address and port) of the contest server (and a dedi-
cated test server) were announced later via the official Contest mailing list.
Agents communicated with the server by exchanging XML messages. Mes-
sages were well-formed XML documents, described later in this document.
We recommended using standard XML parsers available for many program-
ming languages for generation and processing of these XML messages.

2.4.1 Communication Protocol

The tournament consisted of a number of matches. A match is a sequence of
simulations during which two teams of agents compete in several different
settings of the environment. However, from the agent’s point of view, the
tournament consisted of a number of simulations in different environment
settings and against different opponents.

The tournament was divided into three phases. During the initial phase,
agents connected to the simulation server and identified themselves by user-
name and password (AUTH-REQUEST message). Credentials for each agent
were distributed in advance via e-mail. As a response, agents received the
result of their authentication request (AUTH-RESPONSE message) which ei-
ther succeeded, or failed. After successful authentication, agents waited un-
til the first simulation of the tournament started.

At the beginning of each simulation, agents of the two participating teams
were notified (SIM-START message) and received simulation specific infor-
mation: simulation ID, opponent’s ID, grid size, number of steps the simu-
lation will last and the depot position.

In each simulation step an agent received a perception about its environ-
ment (REQUEST-ACTION message) and it responded by performing an ac-
tion (ACTION message). Each request-action message contained informa-
tion about nine neighboring cells around the agent (including the one agent
stands on), its absolute position in the grid, simulation step number, num-
ber of gold items the agent carries and deadline for its response. The agent
had to answer within the given deadline. The action message contained the
identifier of the action, agent wants to perform, and action parameters, if
required.

When the simulation was finished, participating agents received the noti-
fication about it (SIM-END message) which included the information about
the number of gold items collected by the team agent belongs to and the in-
formation about the result of the simulation (whether the team won, or lost
the simulation).

All agents which currently did not participate in a simulation had to wait
until the simulation server notified them about either 1) the start of a simu-
lation they are going to participate in, or 2) the end of the tournament.

11 Technical Report IfI-07-15



Scenario Description

At the end of the tournament, all agents received the notification (BYE
message). Subsequently the simulation server terminated the connection to
the agent.

2.4.2 Reconnection

When an agent lost connection to the simulation server, the tournament
proceeded without disruption, only all the actions of the disconnected agent
were considered to be empty (skip). Agents were responsible for maintaining
the connection to the simulation server and in a case of connection disrup-
tion, they were allowed to reconnect.

An agent reconnected by performing the same sequence of steps as at the
beginning of the tournament. After establishing the connection to the sim-
ulation server, it sent AUTH-REQUEST message and received AUTH-RESPON-
SE. After successful authentication, the server sent SIM-START message to an
agent. If an agent participated in a currently running simulation, the SIM-
START message was delivered immediately after AUTH-RESPONSE. Other-
wise an agent had to wait until the next simulation in which it participates.
In the next step when the agent was picked to perform an action, it received
the standard REQUEST-ACTION message containing the perception of the
agent at the current simulation step and simulation proceeded in a normal
mode.

2.4.3 Ping Interface

The simulation server provided a ping interface in order to allow agents to
test their connection to the simulation server. An agent can send a PING
message containing a payload data (ASCII string up to 100 characters) and it
received a PONG message with the same payload. As all messages contained
a timestamp (see description of the message envelope below), an agent could
also use the ping interface to synchronize its local time with the server.

2.4.4 XMLMessages Description

XML messages exchanged between server and agents were zero terminated
UTF-8 strings. Each XML message exchanged between the simulation server
and agent consisted of three parts:

• Standard XML header: Contains the standard XML document header
<?xml version="1.0" encoding="UTF-8"?>

• Message envelope: The root element of all XML messages was<message>.
It has attributes: the timestamp and a message type identifier.

DEPARTMENTOF INFORMATICS 12



AGENT CONTEST COMPETITION - 3RD EDITION

• Message separator: Each message is a UTF-8 zero terminated string.
Messages are separated by null byte.

Timestamp is a numeric string containing the status of the simulation
server’s global timer at the time of message creation. The unit of the global
timer is milliseconds and it is the result of standard system call "time" on the
simulation server (measuring number of milliseconds from January 1, 1970
UTC). Message type identifier was one of the following values: auth-request,
auth-response, sim-start, sim-end, bye, request-action, action, ping, pong.

Messages sent from the server to an agent contained all attributes of the
root element. However, the timestamp attribute could be omitted in mes-
sages sent from an agent to the server. In the case it was included, server
silently ignored it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

According to the message type, the root element <message> can contain
simulation specific data. These simulation data are described and explained
in the official contest webpage2.

3 Submission

The participation in this contest consisted of two parts. Participants first sub-
mitted the description of analysis, design and implementation of a multi-
agent system for the above application. Existing multi-agent system method-
ologies such as Gaia, Prometheus or Tropos can be used to describe the sys-
tem. For the description of the implementation, it should be explained how
the design is implemented. This can be done by explaining, for example,
which programming language, platform, tools, and techniques are used to
implement the multi-agent system. These submissions are included in this
volume.

The second part of the contest is the actual participation in the tourna-
ment by means of an (executable) implementation of a multi-agent system.

2 http://cig.in.tu-clausthal.de/fileadmin/user_upload/_temp_
/ac07-protocol.txt

13 Technical Report IfI-07-15

http://cig.in.tu-clausthal.de/fileadmin/user_upload/_temp_/ac07-protocol.txt
http://cig.in.tu-clausthal.de/fileadmin/user_upload/_temp_/ac07-protocol.txt


Submission

The agents from each participating systems (agent teams) were executed lo-
cally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams perform actions, was run on the re-
mote contest simulation server. Interaction/communication between agents
from one team has been managed locally, but the interaction between indi-
vidual agents and their environment (run on the simulation server) was via
Internet. Participating agents connected to the simulation server that pro-
vided the information about the environment. Each agent from each team
connected and communicated to the simulation server using a TCP connec-
tion.

3.1 Received Submissions

We have received seven submissions for this edition of the contest from which
one withdrew just before the start of the actual contest tournament. From
the received submissions, which are included in this volume, three submis-
sions used existing multi-agent development methodologies to specify and
design their multi-agent systems. Other submissions used their own devel-
oped agent platforms and corresponding customised development method-
ologies. The withdrawn submission intended to use GoLog, a knowledge
representation language based on logic. Unfortunately, one competitor in
the contest could not provide a description of their team in this volume.

The submission by J.F. Hübner and R.H. Bordini was a collaboration be-
tween Durham University, UK, and Universidade Regional de Blumenau, Bra-
zil. Like their submission to the previous edition of this contest, they use
Prometheus [10] as the multi-agent system development methodology to
specify and design their multi-agent system. Using this methodology, the
multi-agent system is designed by means of a system overview Diagram that
describes the interaction between miner and leader agents. Miners are the
agents that interact with the contest simulator and the leader helps the co-
ordination of some activities. These agents are subsequently specified and
designed in terms agent overview diagrams describing their specific knowl-
edge, goals and plans. Their designed system is then implemented in Jason
[5], which is an interpreter of an extension of the agent programming lan-
guage AgentSpeak [11]. As it was required by the contest, their multi-agent
system consisted of six miner agents operating in the simulated environ-
ment. These agents follow a general strategy according to which each agent
is responsible for one quadrant of the grid environment. The leader helps
the miners to coordinate themselves in two ways. First, it allocates miners to
quadrants, and second it coordinate the negotiation process that is started
when a miner sees a piece of gold and is not able to collect it (because its
container is full).

The second submission that uses existing multi-agent system development

DEPARTMENTOF INFORMATICS 14



AGENT CONTEST COMPETITION - 3RD EDITION

methodologies to specify and design their system is by L. Astefanoaei, C.P.
Mol, M.P. Sindlar, and N.A.M. Tinnemeier from Utrecht University, Nether-
lands. They use a combination of Tropos and Moise+ methodologies. They
use Tropos to specify the multi-agent system in terms of system goal and sub-
goals and Moise+ to specify the roles the agent cap play and the interaction
between roles. In their system specification, an agent can play three differ-
ent roles: leader, scout, and miner. Moreover, their system can have at most
one leader, and zero to six players that can play the scout or miner role. The
leader communicates with the scouts and the miners. The leader coordinate
the behavior of scouts and miners by means of task ordering: first the scouts
explore the wilderness, then the miners can gold-enrich the team. They use
the 2APL programming language and its corresponding multi-agent plat-
form to implement and execute their multi-agent system.

The third submission is by E. Tuguldur and M. Patzlaff from the DAI-Labor,
Technische Universität Berlin, Germany. They develop a multi-agent system
based on microJIAC agent definition and its corresponding Maven plug-in
that supports the compilation and packaging process of agents. According
to this definition, an agent consists of three components: connector, per-
ceptor, and monitor. The connector maintains the connection to the con-
test server, the perceptor updates the agent’s world model, and the monitor
which provides a graphical user interface to display the world model of the
agent (mainly for debug purposes). The microJIAC is a lightweight agent ar-
chitecture targeted at devices with different capabilities. Each agent can be
in either explorer or transporter mode. An agent in the explorer mode aims
at collecting gold items up to the maximum amount of gold items that it
can carry. When an agent changes its role to transporter mode, it aims at
reaching the depot to drop all gold items. After dropping its gold items the
transporter agent becomes an explorer again.

The fourth submission was by A. Hessler, B. Hirsch, and J. Keiser, also
from the DAI-Labor, Technische Universität Berlin, Germany. They used the
JIAC IV (Java Intelligent Agent Componentware) methodology and its cor-
responding framework to develop their multi-agent system participating in
the agent contest. The JIAC methodology is based on the JIAC meta-model
that has explicit notions of goal, rule, plan, service and protocol. The JIAC
development process starts with collecting, structuring and prioritising do-
main vocabulary and requirements. Based on the requirements with the
highest priority a multi-agent system architecture is designed by listing the
agents. Plans, services and protocols are then implemented and plugged
into agents. The application is then evaluated and, if necessary, the cycle
is started until the desired quality of the multi-agent system is achieved. In
their multi-agent system implementation agents cooperate by sharing their
perceptions, states, and intentions as they may go for the same unknown
field or to pick the same gold items. In their approach agent communica-
tion and cooperation is fully decentralised. There is neither a message broker

15 Technical Report IfI-07-15



Technical infrastructure

nor a central instance which coordinates agents. Every agent builds its own
world model from what it is told by the server and the other agents. Every
agent also plans for itself, taking the states and intentions of other agents
into account.

The fifth system, by Sebastian Sardina and Dave Scerri, from RMIT Univer-
sity, Australia, was mostly designed using the Prometheus [10] multi-agent
system development methodology and implemented in the JACK BDI agent-
oriented programming language [6] using its JDE development environment.
In this system, there are two type of agents: player agents and one coordi-
nator agent. The player agents are the ones that are able to interact with
the game simulator; whereas the coordinator agent acts as an (information)
proxy among the player agents, and instructs the players on some activities.
At any point in time, a player agent can play either a “collector” role or an
“explorer” role. These roles are assigned by the coordinator agent. As a col-
lector, a player agent’s main objective is to collect gold pieces and bring them
to the depot location. In contrast, as an explorer, the objective of a player
is to gather information about unknown areas of the world, and communi-
cate such information to the coordinator. Collector players also have a set
of quantitative parameters that influence the way it would behave. For ex-
ample, an “exploration attitude” parameter determines how bias a collector
agent is towards exploration. In that way, a collector can be bias to explore
(or to avoid exploring) unknown areas of the grid while traveling to the de-
pot location for gold deposition. Unfortunately, the JACK system was not
able to sustain its participation throughout the whole contest, as the system
communication infrastructure was not sufficiently robust and, as a result,
the agents would very often lose communication with the contest simula-
tor.

The final submission is by S. Schiffel, M. Thielscher, and D. Thu Trang
from Dresden University of Technology, Germany. Like their submission
in the previous edition of this contest, they do not use any specific multi-
agent system development methodology. Instead, they use FLUX agents to
design and implement their multi-agent system. Each FLUX agent is a logic
program consisting of three modules: the fundamental reasoning facilities
based on the fluent calculus, the specification of the effects of actions, and
the strategy. Their implemented multi-agent system consists of six agents
and a leader. The leader coordinates the behaviors of other agents by helping
them to share their information about the environment. The action of an
agent depends on the current intentions of that agent and the current state
of the world. After an agent decides on its next action it sends its new infor-
mation and its current intention to the leader. The leader sends information
gathered by the other agents to the agent and might request the agent to
change its intentions for coordinating the agents of the team. Conflicts be-
tween agents are resolved in two ways. First, the leader assigns areas to the
agents for exploration. Second, small conflicts such as when several agents

DEPARTMENTOF INFORMATICS 16



AGENT CONTEST COMPETITION - 3RD EDITION

try to get into the same cell, are resolved using fixed priorities of the agents.

4 Technical infrastructure

In the third edition of this Agent Contest, we re-used the technical infras-
tructure we developed for the second edition. Briefly, the server’s architec-
ture consists of

1. simulation plug-in: A replaceable module providing the logics of the en-
vironment simulation,

2. agent session manager: Responsible for holding the sessions between the
server and individual agents and en/de-coding of XML messages of the
protocol,

3. visualization library: It produced the SVG records from each time frame
of the simulation environment state,

4. contest webinterface: Providing a public view and interface to the MAS-
Sim server, and

5. MASSim core module: Managing the tournament scheme and provid-
ing the connection between the simulation plug-in, agent session man-
ager and web-interface.

A more detailed description of the system can be found in the report on
the second edition of the Agent Contest [9]. The system is published on the
official Contest website:
http://cig.in.tu-clausthal.de/AgentContest/.

4.1 Contest preparation

As in previous editions, before the tournament itself, the Contest organiza-
tion went through several preparatory stages. We released the communica-
tion protocol for the 2007 Contest simulation scenario in February 2nd 2007
together with a template for system description submissions. The first pro-
tocol release contained a requirement that each agent has to run from a dis-
tinct IP address, however after a discussion with potential participants, we
dropped this requirement later (February 23rd). The main reason was the
variety of network infrastructures on the participants’ side like e.g. NAT and
various other IP masquerading technologies which render this requirement
not enforceable.

Shortly before the system description submission deadline on March 10th
2007, we published the first release of the testing suite on March 6th, which
was later followed by a precise description of the algorithm for calculating

17 Technical Report IfI-07-15

http://cig.in.tu-clausthal.de/AgentContest/


Technical infrastructure

agent movements regarding various configurations of situations when agents
push each other. The testing suite contained a testing version of the MASSim
server configured to run the 2007 Contest simulation, together with a sim-
ple debugging tool (MASSim Debug Monitor) and vanilla agents compatible
with the Contest scenario.

The Agent Contest 2007 testing phase was launched on March 27th 2007
and ran until the very Contest tournament launch on May 2nd 2007. Dur-
ing this period, which lasted more than one month, the participants could
freely connect to the testing server and test their agents in a simulated match
against our dummy Bot agent team. We did not allow different teams to com-
pete against each other as this should happen only during the tournament
itself. During the testing phase, few minor bugs in the scenario implemen-
tation were discovered and quickly fixed.

4.2 Tournament

The Agent Contest 2007 tournament itself was launched on Wednesday, May
2nd 2007 at 15:00 CEST (UTC/GMT+2). A few days in advance, the partici-
pants received the Internet coordinates of the tournament server together
with credentials for their agents. The Contest was served on the tournament
server agentmaster.in.tu-clausthal.de and it could be observed via
a web-interface at the address http://agentmaster.in.tu-clausthal.
de/. We provided also a chat space for participants, what in the course of
the tournament itself turned out to be a vital and efficient communication
tool.

The teams competed sequentially against each other so that the order of
teams was fixed (decided randomly at the beginning of the tournament) and
then 1st played against the 2nd, then 3rd, 4th, etc. and finally against the
last in the row. Then the 2nd team played against the 3rd, 4th, etc. The
participation order was:

1. microJiacteam,

2. FLUXteam,

3. JiacIVteam,

4. AC07bot,

5. JACKteam,

6. APLteam,

7. GOLOGteam,

8. Jasonteam.

DEPARTMENTOF INFORMATICS 18

agentmaster.in.tu-clausthal.de
http://agentmaster.in.tu-clausthal.de/
http://agentmaster.in.tu-clausthal.de/


AGENT CONTEST COMPETITION - 3RD EDITION

Unfortunately, this approach caused the last team in a row (Jasonteam) to
compete only at the end of every "cycle", which was also a reason for com-
plaints raised by this team during the tournament.

The tournament itself ran for several days and officially finished only on
Monday, May 7th 2007 in the early morning. However, its execution was
disrupted by a simulation server failure on Saturday, May 5th in the late
evening. The failure lasted for several hours and in the early morning on
Sunday May 6th, the tournament was restarted and the remaining simula-
tions were run to the end.

During the tournament, on Friday May 4th, because of technical and per-
formance difficulties, the GOLOG team decided to withdraw from the tour-
nament. The team was disconnected and to keep the tournament run con-
sistently, replaced with a dummy bot team.

The tournament lasted for approximately 4 and a half days. The long tour-
nament execution time was caused by the setup of the simulation scenarios
and our own desire not to handicap deliberating approaches.

For illustration, for 8 participating teams, and 5 simulations, we get 7×8 =
56 matches, i.e. 56×5 = 280 simulations. Simulations had approximately 800
steps. Provided a timeout of approximately 4 seconds per simulation step, in
the worst case (when each team fully uses the timeout for deliberation), we
could have a tournament running for 248 hours, i.e. approximately 10 days.
Therefore, in the next editions of the Contest we plan to approach this issue
by a parallel execution of several simulations simultaneously.

All results, together with the SVG recordings of all the matches and the
official DVD ISO image with a mirror-copy of the whole tournament website
can be downloaded from http://agentmaster.in.tu-clausthal.de/.

4.3 Simulation instances

The teams competed in matches each consisting of 5 different grid simula-
tions with identifiers Park, Meadow, Semiramis, Fence and Overkill (Figure 1).
The first two simulation scenarios Park and Meadow are randomly generated
and differ only in the amount of gold items and trees. While the first features
more trees and sparse gold, Meadow is configured to feature the opposite.
Scenarios Semiramis and Fence are handcrafted labyrinths to challenge agent
teams obstacle avoiding and communication approaches. Finally Overkill is
a variation on the most difficult maze from the previous Contest 2006. The
details of configuration properties of the scenarios is listed in Table 1.

5 Contest results

The winner of the ProMAS’07 Agent Contest was the JIAC IV team from the
DAI-Labor, Technische Universität Berlin, Germany. They gained the high-

19 Technical Report IfI-07-15

http://agentmaster.in.tu-clausthal.de/


Contest results

Figure 1: Initial simulation scenarios Park, Meadow, Semiramis, Fence and
Overkill (left→ right, up→ down)

DEPARTMENTOF INFORMATICS 20



AGENT CONTEST COMPETITION - 3RD EDITION

simulation ID: Park Meadow Semiramis Fence Overkill

grid size: 51x51 40x40 40x40 51x51 30x30

depot position: random random (19,34) (29,34) (20,20)

number of obstacles: 250 95 175 235 76

initial number of gold items: 100 175 85 155 66

information distortion probability: 10% 10% 20% 5% 5%

action failure probability: 10-25% 5-33% 10-50% 10-50% 5-33%

gold generation frequency: 20 steps 10 steps 20 steps 20 steps 30 steps

number of generated gold items: 2 3 4 3 5

number of simulation steps: 1000 800 800 1000 700

Table 1: Simulation scenario configurations

est number of points: 63. The second team was microJIAC team, from the
same institute, with 54 points followed by the Jason team with 49 points.
The summary of the whole tournament is summarized in the Table 2.

Rank Team GoldScore Points
1. JIAC IV team 2824 : 1759 63
2. microJiacteam 2680 : 1598 54
3. Jasonteam 2563 : 1988 49
4. FLUXteam 2514 : 1816 43
5. APLteam 1246 : 2585 12

Table 2: Final tournament results.

6 Conclusion

The main motivations behind this Agent Contest are the following:

• to foster the research and development of practically oriented appro-
aches to programming multi-agent systems,

• to evaluate the state-of-the-art techniques in the field, and

• to identify key problems using these techniques.

The three editions of the Agent Contest have convinced us about its im-
pact to the research in multi-agent system development. One important
contribution is the great opportunity for the related research groups to par-
ticipate in this contest in order to test and evaluate their developed agent

21 Technical Report IfI-07-15



Acknowledgements

development approaches. Participating in this contest helps them to dis-
cover bugs in their developed tools and technologies (e.g., multi-agent sys-
tem methodology, agent programming language and their interpreters, agent
platforms, etc.). The result is an improvement in the overall quality of the
existing multi-agent system development approaches. Moreover, we notice
that this contest helps research groups to deepen the understanding of prac-
tical aspects of using their approaches.

Another contribution of this contest is that different complementary multi-
agent system development approaches are combined and aligned to develop
multi-agent systems. For example, both Jason and 2APL teams use exist-
ing multi-agent system development methodologies to specify and design
systems, which are subsequently implemented in their developed program-
ming languages. Moreover, the implemented systems are then executed by
their developed execution platforms. In this way, they can have a better un-
derstanding of problems related to the integration of different complemen-
tary approaches.

From the last three editions of the Contest we learned that the current
scenario scheme does not enforce coordination and cooperation among the
agent teams too much. Therefore, for the next edition of the Agent Con-
test we are planning to rethink the simulation scenarios so that participat-
ing agent teams will be required to have more advanced coordination mech-
anism. In particular this means that we need to introduce a higher level of
dependency between the agents. I.e. 1) a single agent alone shouldn’t be
able to achieve a team goal, and 2) the environment itself has to have its own
dynamics as if playing against the agent team.

As we already mentioned above, because of the extensive duration of the
Contest tournament, we plan to modify the simulation server so, that it will
be able to run multiple simulations simultaneously. To this end and to im-
prove the simulation server reliability, we plan to migrate the existing soft-
ware infrastructure to a computer with a higher processing power.

Of course, we also plan to improve the contest management, especially
with respect to managing the contest infrastructure, mailing lists and con-
test schedule planning and announcements. The participating agent teams
in the last edition of the contest advise us to have a scenario where there are
few pieces of gold, so that good strategies to search for (scarce) gold can be
evaluated. They also advised us to have more depots to avoid queues to de-
liver the gold. We are planning to organize the next edition of the Agent
Contest again in association with the ProMAS workshop.

7 Acknowledgements

We are very thankful to the students for the Department of Informatics of
Clausthal University of Technology. They worked hard in order to meet all

DEPARTMENTOF INFORMATICS 22



AGENT CONTEST COMPETITION - 3RD EDITION

the deadlines and deliver high-quality code. In particular, our thanks go this
year to

• Xavier Queralt Mateu for the tournament server deployment, adminis-
tration and maintenance, and

• Slawomir Deren for the simulation engine and scenarios development.

And of course we are thankful to Bernd Fuhrmann, Michael Köster, David
Mainzer and Dominik Steinborn for the support when problems with the tech-
nical infrastructure occurred. We also thank all the contest participants who
contributed to its success.

References

[1] http://www.sics.se/tac.

[2] http://www.agentcities.org/EUNET/Competition.

[3] R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Multi-
Agent Programming: Languages, Platforms, and Applications. Number 15
in MASA. Springer, Berlin, 2005.

[4] R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Program-
ming Multi-Agent Systems, volume 3346. LNAI, Springer Verlag, 2005.

[5] R. H. Bordini and J. F. Hübner. BDI Agent Programming in AgentSpeak
Using Jason (Tutorial Paper). In F. Toni and P. Torroni, editors, CLIMA
VI, volume 3900 of Lecture Notes in Computer Science, pages 143–164.
Springer, 2005.

[6] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent
Agents: Components for intelligent agents in Java. AgentLink News
Letter, Jan 1999.

[7] M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Programming Multi-
Agent Systems, volume 3067. LNAI, Springer Verlag, 2004.

[8] M. Dastani, J. Dix, and P. Novák. The First Contest on Multi-Agent Sys-
tems based on Computational Logic. In F. Toni and P. Torroni, editors,
Proceedings of CLIMA ’05, London, UK, volume 3900 of Lecture Notes in
Artificial Intelligence, pages 373–384. Springer, Berlin, 2006.

[9] M. Dastani, J. Dix, and P. Novák. The second contest on multi-agent sys-
tems based on computational logic. In K. Inoue, K. Satoh, and F. Toni,
editors, CLIMA VII, volume 4371 of Lecture Notes in Computer Science,
pages 266–283. Springer, 2006.

23 Technical Report IfI-07-15

http://www.sics.se/tac
http://www.agentcities.org/EUNET/Competition


References

[10] L. Padgham and M. Winikoff. Prometheus: A methodology for devel-
oping intelligent agents. In Agent-Oriented Software Engineering III: Third
International Workshop (AOSE’02). Springer, LNAI 2585, 2003.

[11] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In W. V. de Velde and J. W. Perram, editors, MAAMAW, vol-
ume 1038 of Lecture Notes in Computer Science, pages 42–55. Springer,
1996.

[12] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM), 12(3):317–370, 2003.

DEPARTMENTOF INFORMATICS 24


	Introduction
	Scenario Description
	Technical Description of the Scenario
	Team, Match, and Simulation
	Environment objects
	Perception
	Actions
	Action Execution Algorithm
	Depot cell
	Timeout
	Fatigue (Information Distortion/Action Failure)
	Final Phase

	General Agent-2-Server Communication Principles
	Communication Protocol
	Reconnection
	Ping Interface
	XML Messages Description


	Submission
	Received Submissions

	Technical infrastructure
	Contest preparation
	Tournament
	Simulation instances

	Contest results
	Conclusion
	Acknowledgements

