
Putting APL Platforms to the Test:
Agent Similarity and Execution
Performance
Tristan Behrens, Koen Hindriks, Jomi Hübner, Mehdi
Dastani

IfI Technical Report Series IfI-10-09

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Federico Schlesinger
Contact: federico.schlesinger@tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Embedded Systems)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Dr. Michaela Huhn (Theoretical Foundations of Computer Science)

Putting APL Platforms to the Test:
Agent Similarity and Execution Performance

Tristan Behrens, Koen Hindriks, Jomi Hübner, Mehdi Dastani

Abstract

It is our goal to compare agent programs, implemented by means of dif-
ferent agent programming languages, by firstly reasoning about their sim-
ilarity and secondly by measuring the time it takes them to reach specific
states. In this paper, we will establish a similarity notion based on compar-
ing agent states and agent runs. An agent state is usually defined as a snap-
shot of the agent’s internals during execution, an agent run is usually
defined as a sequence of such agent states. Examining the different no-
tions of agent states specific to different agent programming languages,
we will define generic agent states/runs and establish a similarity notion
on top of that. After defining a set of mappings, that map specific agent
states/runs to generic ones in order to facilitate a common starting point,
we will apply this very notion in a case study. This case study is rendered
possible by a toolkit, whose description is part of this paper and that al-
lows for automatically executing and examining agents executed by dif-
ferent agent interpreters.

1 Introduction

In this paper, which is settled in the area of agent-oriented programming,
especially in the field of BDI-based software development, we will work to-
wards the goal of a detailed comparison of agent programs and APL plat-
forms. Specifically we want to find out whether a dedicated knowledge rep-
resentation implementation should be preferred over using a reusable one or
not.

We will perform a simple case study with a very simple scenario: calculat-
ing Fibonacci-numbers using 2APL [Dastani, 2008], GOAL [Hindriks, 2009]
and Jason [Bordini et al., 2007]. We will introduce generic notions of agent
states and agent runs, which will function as the formal framework of our re-
search. In order to execute the case study, we have developed a toolkit based
on a couple of principles that we have to define first.

In summary the contributions of this paper are:

• the definition of an agent program similarity notion,

1

Agent Program Similarity

• the specification of an agent programming toolkit called XYZ1, and

• the execution and results of a case-study.

In the second section, we will establish a notion of agent program simi-
larity based on generic agent runs. After that, in the third section, we will
provide a brief description of XYZ. The fourth section consists of our exper-
iment, that is its description, its execution and the results. Finally, we con-
clude the paper with related work, a conclusion and a hint on future work.

2 Agent Program Similarity

It is our designated goal to compare agent programs that are implemented
by means of different agent programming languages. To reach that goal it is
necessary to define a similarity notion, which in turn requires that we firstly
examine a set of programming platforms and find out what they have in
common, in order to establish a basis for the similarity notion. We will ex-
amine and compare 2APL, GOAL and Jason and specify the fundament for
similarity by means of generic agent states. Although the considered plat-
forms are expected to differ significantly when it comes to mental attitudes,
it is also expected that a definition of generic agent states can be established
without much effort. On top of these generic agent states we will define
generic agent runs (sequences of agent states). After that, we will define a no-
tion of agent program similarity that is based on these generic runs. We will
also provide mappings from platform-specific agent runs to generic agent
runs (as depicted in Figure 1).

2.1 Agent Programs and Agent States

The first required notion is the notion of an agent state. We will now intro-
duce the different definitions of agent states for 2APL, GOAL and Jason. Addi-
tionally, we will give a hint on how agent states change over time. Note, how-
ever, that it does not lie in the scope of this paper to give a full description
of agent syntax and semantics. Please refer to the literature [Dastani, 2008,
Hindriks, 2009, Bordini et al., 2007] for complete descriptions. We will con-
clude this part of the paper with a brief comparison.

The state of a 2APL agent consists of a belief base that is expressed by means
of a Prolog program, a list of declarative goals, that constitute the goal base,
a set of plan entries, that constitute the plan base, and the event base, that
consists of external events received from the environment, failed plans, and
received messages. Formally:

1For the sake of anonymity the actual name is omitted.

DEPARTMENTOF INFORMATICS 2

AGENT SIMILARITY AND EXECUTION PERFORMANCE

P2APL

PGOAL

PJason

2R2APL

2RGOAL

2RJason

ρ2APL

ρGOAL

ρJason

S2APL

SGOAL

SJason

σ2APL

σGOAL

σJason

R2APL

RGOAL

RJason

∈

∈

∈

2S2APL

2SGOAL

2SJason

ι2APL

ιGOAL

ιJason

RA

M2APL

MGOAL

MJason

Figure 1: The different data-structures that we introduce in order to compare
agent-programs, and the mappings between them.

Definition 1 (2APL agent state)
The tuple Aι := 〈ι, σ, γ,Π,Θ, ξ〉 is an 2APL agent state with:

• ι a string representing the agent’s identifier,

• σ a set of belief expressions constituting the belief base,

• γ a list of goal expressions constituting the goal base,

• Π a set of plan entries,

• Θ a ground substitution that binds domain variables to ground terms, and

• ξ := 〈E, I,M〉 an event-base with E the set of events received from external
environments, I set of plan identifiers denoting failed plans, andM the set of
messages sent to an agent.

The state of a GOAL agent on the other hand consists of a knowledge base
and a belief base, both expressed by means of a knowledge representation
(KR) language2, and a goal base, again expressed by the same language. Addi-
tionally it contains the current percepts, rules for action selection, received
messages and actions to be performed. Formally:

Definition 2 (GOAL agent state)
A GOAL agent state consists of

2Although GOAL does not restrict the agent developer to using a specific KR language, we will
stick to using Prolog.

3 Technical Report IfI-10-09

Agent Program Similarity

• a mental state 〈D,Σ,Γ〉, where D is called a knowledge base, Σ is a belief
base, and Γ is a goal base,

• a set AR of action rules that facilitate the action selection mechanism,

• a set Pof percepts representing the percepts received from the environment,

• a set of M messages received from other agents, and

• a set of A actions to be executed by the environment.

The state of a Jason agent, however, consists of a belief base expressed by
means of a Prolog-like KR language, a plan base, a set of intentions consisting
of partially instantiated plans, an event list, a set of actions to be performed,
a message box for communicating, and a set of suspended intentions. For-
mally:

Definition 3 (Jason agent state)
The tuple 〈ag, C,M, T, s〉 is a Jason agent state with:

• ag is an agent program, which is specified by a set of beliefs and a set of plans,

• C is the circumstance, that is a tuple 〈I, E,A〉 where I is a set of intentions,
each one is a stack of partially instantiated plans, E is a set of events, and A
is a set of actions to be performed,

• M := 〈In,Out, SI〉 is a tuple where In is the mail inbox, Out is the mail
outbox, and SI is the set of suspended intentions,

• T := 〈R,Ap, ι, ε, ρ〉 stores temporary information, R is the set of relevant
plans, Ap is the set of applicable plans, ι, ε, and ρ keep record of a particular
intention, event and applicable plan being considered during the executions,
and

• s indicates the current step of the agent’s deliberation cycle, that is processing
a message, selecting an event, retrieving all relevant plans, retrieving all ap-
plicable plans, selecting one applicable plan, adding the new intended means
to the set of intentions, selecting an intention, executing the selected intention
or clearing an intention

For the sake of convenience, we will use the following definitions for the
rest of our paper:

Definition 4 (agent programs, agent states)

• P2APL is the set of 2APL agent-programs,

• PGOAL is the set of GOAL agent-programs,

DEPARTMENTOF INFORMATICS 4

AGENT SIMILARITY AND EXECUTION PERFORMANCE

• PJason is the set of Jason agent-programs,

• S2APL is the set of 2APL agent-states,

• SGOAL is the set of GOAL agent-states, and

• SJason is the set of Jason agent-states.

Now, we have to briefly compare the different notions of agent states in or-
der to define a notion of generic ones. The belief bases in 2APL and GOAL are
full Prolog, the belief-base in Jason is logic-programming-like, consisting of
facts, rules and strong negation. On the other hand, the goal-bases in 2APL
and GOAL are declarative. The goal base in 2APL, is an ordered collection
of goal-expressions, where every goal-expression is a conjunction of ground
atoms. In GOAL the goal base is a set of goals, where each goal is either a lit-
eral or a conjunction of literals. In Jason there is no explicit declarative goal
base. Goals, that is achievement- and test-goals, are either stored in the event
base together with other events, or they are stored in the triggering-events
of the instantiated plans in the agent’s set of intentions. As we will show
later, Jason goals can be made explicit. We cannot compare the plan-libraries
straight away, because in 2APL and Jason the semantics is different, and be-
cause GOAL lacks plans. For the same reasons, we do not compare intentions.
Also, we do not use events, since the notion of events is different in 2APL and
Jason, and because this notion is absent from GOAL. In summary, we restrict
ourselves to using only goals and beliefs, because this is something that all
three platforms have in common. Furthermore we have to make an assump-
tion about the belief base. That is, that we are going to use only the facts
from the belief-bases, ignoring rules and strong negation. When it comes
to goals we will restrict ourselves to goal-bases that consist of a set of goals,
where each goal is an atom.

2.2 Agent Runs

An agent run is usually defined as a sequence of agent states. We have al-
ready defined states of 2APL, GOAL and Jason agents. On top of that we will
now elaborate on how such states are transformed by the respective inter-
preter. Again we would like to note that a full definition of agent program
syntax and semantics for all three APL platforms, is provided by the liter-
ature [Dastani, 2008, Hindriks, 2009, Bordini et al., 2007]. Usually an agent
has an initial state, which is determined by the respective agent program. For
each individual agent its agent state is transformed by applying the agent in-
terpreter function which is implemented by the respective APL platform. We
will just give a brief but sufficient definition of the semantics. Formally:

Definition 5 (initial agent states)

5 Technical Report IfI-10-09

Agent Program Similarity

• σ2APL : P2APL → S2APL maps all 2APL agent programs to their respective
initial agent-states,

• σGOAL : PGOAL → SGOAL maps all GOAL agent programs to their respec-
tive initial agent-states,

• σJason : PJason → SJason maps all Jason agent programs to their respective
initial agent-states.

2APL agent states evolve as follows: 1. instantiating plans while taking
into account the goal base and the belief base, 2. executing the first action of
all instantiated plans, and 3. processing internal/external events and mes-
sages, which yields new instantiated plans. The evolution of GOAL agents,
on the other hand, is facilitated by a simple instance of a sense-plan-act-
cycle: 1. storing percepts and incoming messages in the belief base, and 2.
randomly selecting an applicable rule and executing it, which will yield ac-
tions to be executed in the environment, and 3. execute the actions. Jason
agents are executed as follows: 1. processing percepts and incoming mes-
sages, 2. selecting an event and instantiating a plan from that event, and
3. selecting an instantiated plan and executing its first action. Formally the
agents evolve by applying the respective interpreter functions:

Definition 6 (agent interpreter functions)

• ι2APL : S2APL → 2S2APL is the 2APL interpreter-function,

• ιGOAL : SGOAL → 2SGOAL is the GOAL interpreter-function, and

• ιJason : SJason → 2SJason is the Jason interpreter-function.

Agent runs are generated by repeatedly applying interpreter-functions:

Definition 7 (agent runs)

• R2APL := (S2APL)+ is the set of 2APL-runs,

• RGOAL := (SGOAL)+ is the set of GOAL-runs,

• RJason := (SJason)+ is the set of Jason-runs,

• ρ2APL : P2APL → 2R2APL is the function that computes all 2APL-runs of a
2APL agent-program, using ι2APL and the initial agent-state derived from a
given agent-program,

• ρGOAL : PGOAL → 2RGOAL is the function that computes all GOAL-runs of
a GOAL agent-program, using ιGOAL and the initial agent-state derived from
a given agent-program, and

DEPARTMENTOF INFORMATICS 6

AGENT SIMILARITY AND EXECUTION PERFORMANCE

• ρJason : PJason → 2RJason is the function that computes all Jason-runs of a
Jason agent-program, using ιJason and the initial agent-state derived from a
given agent-program.

Note, that for the sake of abstraction we will assume that the interpreter
functions are deterministic. Non-determinism would be absolutely feasible
for the framework that we are about to introduce, but for supporting the
readability of this paper, we will refrain from coping with that specific issue
now.

2.3 Generic Agent States and Agent Runs

In the previous subsections, we have shown how 2APL-, GOAL- and Jason-
agents are defined and how they evolve during runtime. We have also calcu-
lated that, if we chose to define generic agent states and runs, judging from
the notions that all three platforms have in common, it would make sense
to use primitive (that is consisting of ground literals) beliefs and goals as the
main building block for defining generic agent states:

Definition 8 (generic agent state)

• BA := {b1, b2, . . .} is a set of generic beliefs,

• GA := {g1, g2, . . .} is a set of generic goals, and

• SA is the set of generic agent states where each si ∈ S is a tuple 〈Bi, Gi〉,
where Bi ⊆ BA is a set of beliefs and Gi ⊆ GA is a set of generic goals.

Of course, a generic agent run is a sequence of generic agent states:

Definition 9 (generic agent run)

• Every sequence 〈B0, G0〉 → 〈B1, G1〉 . . . is an abstract agent run, and

• RA := (SA)+ is the set of all abstract runs.

Now we have to define a set of generalization mappings, that map specific
agent states and runs to generic ones:

Definition 10 (generalization mappings)

• µ2APL : S2APL → SA maps each 2APL agent-state to an abstract agent-
state,

• µGOAL : SGOAL → SA maps each GOAL agent-state to an abstract agent-
state,

• µJason : SJason → SA maps each Jason agent-state to an abstract agent-
state,

7 Technical Report IfI-10-09

Agent Program Similarity

• M2APL : R2APL → RA with

M2APL : (s1, . . . , sn) 7→ (µ2APL(s1), . . . , µ2APL(sn))

maps each 2APL agent run to an abstract agent run,

• MGOAL : RGOAL → RA with

MGOAL : (s1, . . . , sn) 7→ (µGOAL(s1), . . . , µGOAL(sn))

maps each GOAL agent run to an abstract agent run, and

• MJason : RJason → RA with

MJason : (s1, . . . , sn) 7→ (µJason(s1), . . . , µJason(sn))

maps each Jason agent run to an abstract agent run.

We do not have to elaborate the mappings from specific agent runs to
generic ones, since these are inductive in nature. The mappings from spe-
cific agent states to generic ones, however, are more interesting. For 2APL we
consider the belief base and copy every fact contained therein to the generic
belief-base. An equivalent procedure is applied to all atomic goals from the
goal base. The procedure for mapping GOAL’s mental attitudes is the same.
Again we keep all facts from the belief base, while ignoring the rules, and
copy all atomic goals from the goal base to the generic one. For Jason map-
ping the beliefs is almost the same, except for the facts being stripped off
their annotations. Because Jason does not hold a notion of declarative be-
liefs, we have to apply a special treatment to the mental attitudes. Goals can
be extracted 1. from the event-base, and 2. from the triggering-events of
instantiated plans.

2.4 Agent State and Agent Run Similarity

Now, with the definitions of generic agent states and generic agent runs in
place, we can concentrate on agent state and agent run similarity. We expect
repeating states for two reasons: 1. the mapping from specific agent states
to generic ones, which acts as a kind of filtering-function, might yield for
two different specific agent states the same generic one, and 2. agent states
in general might repeat under certain conditions (e.g. when nothing hap-
pens). In order not to burden ourselves with repeating states we introduce a
compression function:

Definition 11 (compression function)
δ : (e1, e2, . . . , en) 7→ (e′1, e

′
2, . . . , e

′
m) is the compression function that maps each

sequence s := (a1, . . . , an) defined over an arbitrary set A to a second one s′ :=
(a′1, a

′
2, . . . , a

′
m) where s′ is s without repeated entries 3.

3Example: δ(1, 2, 2, 3, 1, 1) = (1, 2, 3, 1)

DEPARTMENTOF INFORMATICS 8

AGENT SIMILARITY AND EXECUTION PERFORMANCE

In order to reason about generic agent runs effectively, we define a cou-
ple of filtering projections that allow us to restrict the considered beliefs and
goals to subsets. Sometimes it might not be necessary to take the full belief
and goal bases into account:

Definition 12 (filtering projections)
4
• πB : SA → B with πB : 〈B,G〉 7→ B projects an abstract agent-state to the

respective beliefs,

• πG : SA → G with πB : 〈B,G〉 7→ G projects an abstract agent-state to the
respective goals,

• ΠB : RA → B∗ with

ΠB : (s1, s2, . . .) 7→ (πB(s1), πB(s2), . . .)

projects all abstract agent-runs to sequences of beliefs, and

• ΠG : RA → G∗ with

ΠG : (s1, s2, . . .) 7→ (πG(s1), πG(s2), . . .)

projects all abstract agent-runs to sequences of goals.

It is about time to put things together and define the desired notion of
similarity:

Definition 13 (n-B-/n-G-/n-BG-similar)
• two agent-programs pl1 , pl2 with l1, l2 ∈ {2APL, GOAL, Jason} and p1 ∈ Pl1 ,
p2 ∈ Pl2 are n-B-similar if

r1 := δ(πB(µl1ρ(p1))) = δ(πB(µl2ρ(p2))) =: r2 ∧
| r1 | = n = | r2 |

• two agent-programs pl1 , pl2 with l1, l2 ∈ {2APL, GOAL, Jason} and p1 ∈ Pl1 ,
p2 ∈ Pl2 are n-G-similar if

r1 := δ(πG(µl1ρ(p1))) = δ(πG(µl2ρ(p2))) =: r2 ∧
| r1 | = n = | r2 |

• two agent-programs pl1 , pl2 with l1, l2 ∈ {2APL, GOAL, Jason} and p1 ∈ Pl1 ,
p2 ∈ Pl2 are n-BG-similar if

r1 := δ(µl1ρ(p1)) = δ(µl2ρ(p2)) =: r2 ∧ | r1 | = n = | r2 |

We will apply this similarity notion later, when we elaborate on our case
study.

4 Example: Π{fib(1,1)}(〈{fib(1, 1)., fib(2, 1).}, ∅〉) is (〈{fib(1, 1).}, ∅〉).

9 Technical Report IfI-10-09

XYZ– A Toolkit for Putting APLs to the Test

3 XYZ– A Toolkit for Putting APLs to the Test

This section deals with the software that helps us to compare agent programs
implemented in 2APL, GOAL and Jason. We will firstly lay down a couple of
principles which will then lead to an infrastructure.

3.1 Principles and Infrastructure

In the following, we will define five principles that are supposed to be the
fundament for the infrastructure of XYZ:

• Plug-in architecture: the overall-infrastructure consists of a core, and
of components, that can be plugged in. Components are 1. interpreters,
that load, manage and execute agents, 2. environments to which agents
are connected, which provide them with percepts and in which agents
can act, and 3. tools that evaluate the execution of multi-agent systems.

• Minimal assumptions about components: we assume almost noth-
ing about agents, except that they conform to the agent-definition by
Russel-Norvig [Russell and Norvig, 2003], and that the mental-attitudes
can be accessed from the outside and are mappable to a common rep-
resentation. We assume almost nothing about the interpreters, except
for the requirement that each interpreter executes the MAS in a step-
wise manner and that each interpreter adheres to a specific interface
definition. We assume almost nothing about the tools, except for the
requirement that each tool needs to adhere to a specific interface defi-
nition.

• Execution fairness: we assume that the executions of the different
components are strictly separated and interleaved. That is, that inter-
preters are executed first and in a single-threaded manner. After that
the tools are executed. Tools and interpreters should not interfere with
the execution of other components. This is undesired because it will
lead to disturbances when it comes to performance measurements.

• Areas of application: we intend to use the toolkit for profiling, auto-
mated testing, debugging, and gathering statistics.

Figure 2 shows the infrastructure of XYZ. The components consist of in-
terpreters, tools, an environments. There can be multiple instances of each
component-class. Interpreters execute agents, environments process actions
and generate percepts, and tool query both. The core is a glue-component. It
is static and facilitates loading, executing and releasing components, which
can be dynamically linked during runtime. The core also delivers step-results
(amongst other things: execution time, changed mental attitudes) to the

DEPARTMENTOF INFORMATICS 10

AGENT SIMILARITY AND EXECUTION PERFORMANCE

Interpreters Environments

actions

percepts

Core

control control

Tools

controlstep-results

query query

Figure 2: TheXYZ infrastructure. Tools are active components, when it comes
to querying, but it is the interpreters and environments that provide the
data.

tools. Note that the core, can be controlled, that is that the overall execu-
tion can be paused, resumed or finished. The execution model is as follows:
1. execute interpreter(s) one step, 2. deliver step-results to the tools and let
them evaluate, 3. repeat.

3.2 Implemented Components

For our experiments we have implemented a couple of components for XYZ,
including the standalone interpreters for 2APL, GOAL and Jason, and a set of
tools for monitoring/examining the execution of agents. Standalone means
that the interpreters are absolutely decoupled from any IDE, thus ruling out
the IDE as an entity that decreases the performance5.

The 2APLInterpreter uses the 2APL code-base without adaptions. Ini-
tialization parameters are 1. a MAS-file to be loaded, 2. the executor to be
used, either single-threaded or multi-threaded execution, 3. if Jade (agent
middleware) is to be used and if so, 4. the Jade parameters host and port. The
GOALInterpreter extends the GOAL code-base by a custom made stepping-
scheduler, that executes MASs in a step-wise fashion. Initialization parame-
ters are 1. the MAS-file to be loaded, and 2. the selection of the middle-

5In our first experiments it became clear that the IDE can be a significant factor when it comes
to performance.

11 Technical Report IfI-10-09

Case Study and Experiments

ware (local, RMI, Jade) to be used. The JasonInterpreter makes use of a
custom-made agent-architecture, that, based on available Jason source-codes,
loads and executes agents. The only parameter is the MAS-file. Note, that
other parameters to the execution of a MAS, e.g. the agent middle-ware, are
specified in the MAS-file.

The BreakpointDebugger-tool signals when a specified condition is sat-
isfied. Such a condition could be for example an agent holding a belief or
goal. The signal is issued either if the condition is satisfied for the first time,
or every time it is satisfied. Possible reactions to a signal can be stopping,
pausing or finishing the execution of the MAS. The output of a signal con-
tains the current step of the respective interpreter and the current execution
time. The AgentInspector on the other hand is a convenience tool for
inspecting the mental states of the agents, which are represented in terms
of generic agent states. The SimilarityChecker is more sophisticated. It
has two main functions: 1. storing the evolution of each individual agent
as generic agent runs, and 2. reasoning about the similarity of these agent
runs. The output will be a set of full state-traces and a similarity result.

4 Case Study and Experiments

In this section we will elaborate on a case study that is based on a very simple
task: computing Fibonacci-numbers [of Pisa, 1202]. As a reminder, here is
the definition of the Fibonacci sequence:

F1 := 1, F2 := 1, Fn+2 := Fn+1 + Fn

Although this scenario is fairly simple, it will turn out later that results de-
rived from it are relatively insightful. In this section, we will develop agent
programs for 2APL, GOAL and Jason, that compute the first one thousand
Fibonacci-numbers and compare how much time each program consumes to
reach that goal. The figures 3, 4, and 5 show the source-codes. The function-
ality of the agents is as follows: (1) each agent knows the first two numbers
right from the beginning, (2) each agent has the initial goal of computing
the first one thousand numbers, starting with the third, and (3) if an agent
has the goal of computing a specific number, it computes it, stores the result
in the belief base, drops the respective goal, and adopts the goal of comput-
ing the next one, all until the final number is computed.

4.1 Agent Programs

Since it would not be feasible to provide a full definition of all three con-
sidered agent programming languages, we will only elaborate on syntactical
and semantical notions that are required for understanding the examples.

DEPARTMENTOF INFORMATICS 12

AGENT SIMILARITY AND EXECUTION PERFORMANCE

1 Beliefs: fib(1,1). fib(2,1).
2 Goals: calcFib(3,1000)
3 BeliefUpdates: { true } Fib(N,F) { fib(N,F) }
4 PG-rules:
5 calcFib(N,Max) <-
6 N < Max and fib(N-1,Z1)
7 and fib(N-2,Z2) and is(Z,Z1+Z2) |
8 {[
9 Fib(N,Z);

10 adopta(calcFib(N+1,Max));
11 dropgoal(calcFib(N,Max))
12]}
13 calcFib(N,Max) <-
14 N = Max and fib(N-1,Z1)
15 and fib(N-2,Z2) and is(Z,Z1+Z2) |
16 {[
17 Fib(N,Z);
18 dropgoal(calcFib(N,Max))
19]}

Figure 3: The Fibonacci 2APL agent program.

The 2APL agent program in Figure 3 shows the basic syntactical compo-
nents of an 2APL agent. The initial belief base consists of a full Prolog pro-
gram and thus is usually a list of facts and rules. The belief base is facil-
itated by JIProlog6. In our case it contains only facts about the first two
Fibonacci-numbers. The initial goal base consists of a single goal, that is cal-
culating the first one thousand numbers, starting with the third. In general,
the belief-updates section contains actions that update the belief base by
adding/removing facts if certain preconditions hold. We use a single belief-
update to insert computed numbers. PG-rules trigger the instantiation of
plans in order to reach goals. We have two rules. The first rule computes
a number and triggers the computation of the next one, whereas the sec-
ond rule computes a Fibonacci-number and ceases computation afterwards.
2APL programs can also contain rules for handling events or repairing plans,
but we do not need such rules in this paper.

The GOAL agent program in Figure 4 consists of a belief base, a goal base
and a program section. Again, the initial belief base is a full Prolog pro-
gram. GOAL uses SWIProlog7 as a knowledge representation language. Note,
however, that other languages can also be used for knowledge representa-
tion in GOAL. The initial belief base contains two facts representing the first
two Fibonacci-numbers and the goal base consists of the single goal to com-

6http://www.ugosweb.com/jiprolog/
7http://www.swi-prolog.org/

13 Technical Report IfI-10-09

http://www.ugosweb.com/jiprolog/
http://www.swi-prolog.org/

Case Study and Experiments

pute the first one thousand Fibonacci-numbers, beginning with the third. In
GOAL the program-section specifies how the state of the agent changes over
time. It contains three rules. The first one drops the goal of calculating a spe-
cific number if it is believed by the agent, the second one calculates the nth
number if it is not believed, and the third one raises the goal of computing
the next number.

1 main: fibonacci {
2 beliefs { fib(1,1). fib(2,1). }
3 goals { calcFib(3,1000). }
4 program[order=linear] {
5 if
6 goal(calcFib(N,Max)),
7 bel(Prev is N-1),
8 goal(calcFib(Prev,Max))
9 then

10 drop(calcFib(Prev,Max)).
11 if
12 goal(calcFib(N,Max)),
13 bel(
14 not(fib(N,F)),Prev is N-1,
15 PrevPrev is Prev-1, fib(Prev,FPrev),
16 fib(PrevPrev,FPrevPrev),
17 FN is FPrev + FPrevPrev
18)
19 then
20 insert(fib(N,FN)).
21 if
22 goal(calcFib(N,Max)),
23 bel(fib(N,F),Next is N+1)
24 then
25 adopt(calcFib(Next,Max)).
26 }
27 }

Figure 4: The Fibonacci GOAL agent program.

The Jason agent program in Figure 5 consists of a belief base, a goal base
and two rules. The belief base of a Jason agent is expressed by a logic-program-
ming-like language, that incorporates facts, rules and strong negation. Ja-
son uses a knowledge representation language that has been tailored specifi-
cally for Jason, instead of encapsulating an already existing one like 2APL and
GOAL do. Like before, the belief base consists of two facts and the goal base
contains a single goal. The first rule calculates the next Fibonacci-number
and triggers the computation of the successive one. The second rule calcu-
lates the last number.

DEPARTMENTOF INFORMATICS 14

AGENT SIMILARITY AND EXECUTION PERFORMANCE

1 fib(1,1). fib(2,1).
2 !calcFib(3,1000).
3

4 +!calcFib(N,Max) :
5 N < Max & fib(N-1, Z1) & fib(N-2,Z2) & Z = Z1+Z2 <-
6 +fib(N,Z);
7 !!calcFib(N+1,Max).
8

9 +!calcFib(N,Max) :
10 N == Max & fib(N-1, Z1) & fib(N-2,Z2) & Z = Z1+Z2 <-
11 +fib(N,Z).

Figure 5: The Fibonacci Jason agent program.

We have implemented all three agent programs in accordance with two
criteria: 1. all agent programs should yield agent runs that are similar (more
on that later), and 2. the programs should execute as fast as possible. Note,
that of course there are agent programs that perform faster, but would not
yield the desired agent run. For example, a GOAL program that should calcu-
late the Fibonacci-numbers, while the agent run is ignored, would look more
elegant and would be faster.

4.2 Agent Runs and Similarity

In this part of the paper, we will show and elaborate on the similarity re-
sults gained when comparing the three agent programs directly and auto-
matically using XYZ. We will inspect the agent runs, not in its entirety, but to
an extent that makes our point clear.

This is an excerpt of the generic agent run generated by the 2APL agent:

1. B = {fib(2, 1)., fib(1, 1).}
G = {calcF ib(3, 1000).}

2. B = {fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(4, 1000).}

3. B = {fib(2, 1)., fib(3, 2)., fib(4, 3)., fib(1, 1).}
G = {calcF ib(5, 1000).}

4. B = {fib(2, 1)., fib(3, 2)., fib(4, 3)., fib(5, 5).,
fib(1, 1).}

G = {calcF ib(6, 1000).}

This is an excerpt of the generic agent run generated by the GOAL agent:

15 Technical Report IfI-10-09

Case Study and Experiments

1. B = {fib(2, 1)., fib(1, 1).}
G = {calcF ib(3, 1000).}

2. B = {fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(3, 1000).}

3. B = {fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(4, 1000)., calcF ib(3, 1000).}

4. B = {fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(4, 1000).}

5. B = {fib(4, 3)., fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(4, 1000).}

6. B = {fib(4, 3)., fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(4, 1000)., calcF ib(5, 1000).}

7. B = {fib(4, 3)., fib(2, 1)., fib(3, 2)., fib(1, 1).}
G = {calcF ib(5, 1000).}

8. B = {fib(4, 3)., fib(2, 1)., fib(5, 5)., fib(3, 2).,
fib(1, 1).}

G = {calcF ib(5, 1000).}

9. B = {fib(4, 3)., fib(2, 1)., fib(5, 5)., fib(3, 2).,
fib(1, 1).}

G = {calcF ib(6, 1000)., calcF ib(5, 1000).}

10. B = {fib(4, 3)., fib(2, 1)., fib(5, 5)., fib(3, 2).,
fib(1, 1).}

G = {calcF ib(6, 1000).}

This is an excerpt of the generic agent run generated by the Jason agent:

1. B = {fib(2, 1)., fib(1, 1).}
G = {calcF ib(3, 1000).}

2. B = {fib(2, 1)., fib(1, 1)., fib(3, 2).}
G = ∅

3. B = {fib(2, 1)., fib(1, 1)., fib(3, 2).}
G = {calcF ib(4, 1000).}

4. B = {fib(2, 1)., fib(4, 3)., fib(1, 1)., fib(3, 2).}
G = ∅

5. B = {fib(2, 1)., fib(4, 3)., fib(1, 1)., fib(3, 2).}
G = {calcF ib(5, 1000).}

DEPARTMENTOF INFORMATICS 16

AGENT SIMILARITY AND EXECUTION PERFORMANCE

2APL GOAL Jason
Fib Step Time Step Time Step Time
50 47 752.9 141 968.5 94 27.7

100 97 1226.5 291 2005.6 194 55.1
150 147 1652.7 441 3047.2 294 84.5
200 197 2048.0 591 4080.6 394 111.4
250 247 2457.4 741 5107.0 494 136.4
300 297 2854.0 891 6126.7 594 161.0
350 347 3158.8 1041 7154.2 694 185.3
400 397 3497.4 1191 8171.1 794 208.4
450 447 3885.3 1341 9186.9 894 230.1
500 497 4172.9 1491 10208.5 994 251.2

Table 1: Performance profiles for the three agents, showing the number of
steps and the execution time.

6. B = {fib(2, 1)., fib(5, 5)., fib(4, 3)., fib(1, 1).,
fib(3, 2).}

G = ∅

7. B = {fib(2, 1)., fib(5, 5)., fib(4, 3)., fib(1, 1).,
fib(3, 2).}

G = {calcF ib(6, 1000).}

As you can see, the belief bases evolve in the same way, but the goal bases’
evolutions differ greatly. The agents are n-B,G-similar with n := 999, B :=
BA, and G := ∅. That is, when filtering the generic agent runs down to ones
that only respect the belief base then the programs are similar for 999 steps,
which is the exact number of different steps it takes to compute the first one
thousand Fibonacci-numbers.

4.3 Performance Results

Finally, we will have a look at how fast the agents compute the first one thou-
sand Fibonacci-numbers. Note, at this point and for the sake of comparabil-
ity, that this task is very trivial. We have computed the number via a Java-
program written from scratch. This took about 0.361ms on our machine8.

As the Table 1 and Figure 6 clearly show, the Jason agent program per-
forms best, followed by 2APL and GOAL. Now it becomes clear that we need a
deeper examination on where the reasons for the differences in performance
lie. We suppose that the use of the specific knowledge representation lan-
guages play a major role.

8MacBook Pro CoreDuo 2GHz with 2GB RAM running MacOSX Snow Leopard.

17 Technical Report IfI-10-09

RelatedWork

50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

8000

10000

12000

x (Fibonacci #)

y
(m

s)

2APL
GOAL
Jason

Figure 6: The performance of the three agents. The Jason agent is fastest,
followed by the 2APL and GOAL agents.

5 Related Work

A wide variety of specialized integrated development environments is available
[Pokahr and Braubach, 2009]. We will only consider those who are most in-
teresting for our work. AgentBuilder [AgentBuilder Team,] is an agent plat-
form and toolkit. The software is Java-based, commercial and supports the
reticilar agent definition language (RADL). AgentFactory, on the other hand,
is a cohesive framework for the development and deployment of multi-agent
systems, which require the developer to restrict himself to a single flavor of
agent [Muldoon et al., 2009]. That is, that the developer can either use an
already existing agent interpreter (e.g. AF-APL) or develop a new one from
scratch. We have already introduced the 2APL Platform [Dastani, 2008], which
offers development and debugging facilities for agents written in the 2APL
language, executed on the 2APL architecture. We have considered the GOAL
interpreter [Hindriks, 2009] as well. The IDE allows for creating, editing, run-
ning and inspecting MASs and agents. The Jason IDE [Bordini et al., 2007]
facilitates implementing agents based on an extension of the AgentSpeak(L)
language [Rao, 1996] and developing environments in which these agents
are situated. JIAC [Albayrak and Wieczorek, 1999] is an intelligent agent com-
ponentware, that is a tool suite and an agent platform. It uses the BDI-style
language JADL. And finally, SPARK/eclipse [Morley and Myers, 2004] is a suc-
cessor to PRS[Ingrand et al., 1996]. It runs as an Eclipse-plugin.

The multi-agent programming contest (MAPC) [Behrens et al., 2008] is an
example for an infrastructure that allows for comparing the performance of
different APL platforms and MASs developed using them. The main focus,
however, lies more on comparing the MASs instead of on comparing the APL
platforms. The performance of a MAS is determined in a series of games and
is usually measured by the score achieved in a single game and the overall
score achieved in all games. This score is a very abstract value (e.g. number of
gold-nuggets collected, or number of cows herded) and thus does not reflect

DEPARTMENTOF INFORMATICS 18

AGENT SIMILARITY AND EXECUTION PERFORMANCE

that much of the internals of the considered systems. Statistics that would
facilitate the comparison on a deeper level, values like response-times, and
sizes/dynamics of the mental attitudes, are not gathered. We deem that it
would be beneficial to combine our approach with the MAPC-infrastructure
in order to establish the gathering of different performance values with sim-
ilar agent programs.

6 Conclusion and Future Work

In this paper we have discussed a method to compare agent programs based
on a notion of agent program similarity. We have also demonstrated a simple
case study. The case study was implemented using the toolkit XYZ.

Because we have not fully reached one of our goals, that is the answer to
the question whether a dedicated knowledge representation should be pre-
ferred over a portable one, we estimate that it would pay off to investigate a
finer notion of similarity. For example we should lift the restriction of our ap-
proach to examine similar agent runs and replace it with an approach that is
based on statistics about the execution of basic actions. That is, for example,
the execution of actions that update the mental attitudes, perform a query
on them, send messages to other agents or manipulating/querying the en-
vironment. We strongly believe that a second notion of similarity based on
counting the execution of these basic actions would make sense.

Also, we believe that the environment should definitely be taken into ac-
count as well when comparing. An environment per se is a strong source for
further data that may help judging the performance of a MAS. The environ-
ment interface standard (EIS) [Behrens et al., 2011] is an initiative to making
environments portable and distributable. It would be a good idea to estab-
lish EIS-compatibility in XYZ to tap that source of further data.

Finally, it would make sense to tackle a more sophisticated case study. We
have already mentioned the MAPC, which would be good to act as another
case study. This way we could gather statistics about for example response
time, that is the time between receiving percepts and acting, and sizes/dynamics
of mental attitudes.

References

[AgentBuilder Team,] AgentBuilder Team. Agentbuilder. http://www.
agentbuilder.com/.

[Albayrak and Wieczorek, 1999] Albayrak, S. and Wieczorek, D. (1999). Jiac -
a toolkit for telecommunication applications. In Albayrak, S., editor, Pro-

19 Technical Report IfI-10-09

http://www.agentbuilder.com/
http://www.agentbuilder.com/

References

ceedings of the 3rd International Workshop on Intelligent Agents for Telecom-
munication Applications (IATA 1999), pages 1–18. Springer.

[Behrens et al., 2011] Behrens, T., Dix, J., Koen Hindriks, M. D., Bordini, R.,
Hübner, J., Pokahr, A., and Braubach, L. (2011). An interface for agent-
environment interaction. In Post-Proceedings of ProMAS.

[Behrens et al., 2008] Behrens, T. M., Dastani, M., Dix, J., and Novák, P.
(2008). Agent contest competition: 4th edition. In ProMAS, pages 211–
222.

[Bordini et al., 2007] Bordini, R. H., Hübner, J. F., and Wooldridge, M.
(2007). Programming Multi-Agent Systems in AgentSpeak using Jason (Wiley
Series in Agent Technology). John Wiley & Sons.

[Dastani, 2008] Dastani, M. (2008). 2APL: a practical agent programming
language. Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

[Hindriks, 2009] Hindriks, K. V. (2009). Programming rational agents in
GOAL. In El Fallah Seghrouchni, A., Dix, J., Dastani, M., and Bordini,
R. H., editors, Multi-Agent Programming:, pages 119–157. Springer US.

[Ingrand et al., 1996] Ingrand, F., Chatila, R., Alami, R., and Robert, F.
(1996). PRS: A High Level Supervision and Control Language for Au-
tonomous Mobile Robots. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA 1996), pages 43–49.

[Morley and Myers, 2004] Morley, D. and Myers, K. (2004). The spark agent
framework. In AAMAS ’04: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 714–721, Wash-
ington, DC, USA. IEEE Computer Society.

[Muldoon et al., 2009] Muldoon, C., O’Hare, G. M., Collier, R. W., and
O’Grady, M. J. (2009). Towards pervasive intelligence: Reflections on the
evolution of the agent factory framework. In El Fallah Seghrouchni, A.,
Dix, J., Dastani, M., and Bordini, R. H., editors, Multi-Agent Programming:,
pages 187–212. Springer US.

[of Pisa, 1202] of Pisa, L. (1202). Liber Abaci.

[Pokahr and Braubach, 2009] Pokahr, A. and Braubach, L. (2009). A survey
of agent-oriented development tools. In El Fallah Seghrouchni, A., Dix, J.,
Dastani, M., and Bordini, R. H., editors, Multi-Agent Programming:, pages
289–329. Springer US.

[Rao, 1996] Rao, A. (1996). AgentSpeak(L): BDI Agents Speak Out in a Logi-
cal Computable Language. In de Velde, W. V. and Perram, J., editors, Pro-
ceedings of the 7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW 1996), pages 42–55. Springer.

DEPARTMENTOF INFORMATICS 20

AGENT SIMILARITY AND EXECUTION PERFORMANCE

[Russell and Norvig, 2003] Russell, S. J. and Norvig (2003). Artificial Intelli-
gence: A Modern Approach (Second Edition). Prentice Hall.

21 Technical Report IfI-10-09

	Introduction
	Agent Program Similarity
	Agent Programs and Agent States
	Agent Runs
	Generic Agent States and Agent Runs
	Agent State and Agent Run Similarity

	XYZ– A Toolkit for Putting APLs to the Test
	Principles and Infrastructure
	Implemented Components

	Case Study and Experiments
	Agent Programs
	Agent Runs and Similarity
	Performance Results

	Related Work
	Conclusion and Future Work

