
The Multi-Agent Programming
Contest from 2005–2010: From Gold
Collecting to Herding Cows
Tristan Behrens, Mehdi Dastani, Jürgen Dix, Michael
Köster, Peter Novák

IfI Technical Report Series IfI-10-14

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Federico Schlesinger
Contact: federico.schlesinger@tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Embedded Systems)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Dr. Michaela Huhn (Theoretical Foundations of Computer Science)

The Multi-Agent Programming Contest from 2005–2010:
From Gold Collecting to Herding Cows

Tristan Behrens, Mehdi Dastani, Jürgen Dix, Michael Köster, Peter Novák

T. Behrens, J. Dix and M. Köster at Department of Informatics, Clausthal University of
Technology, Julius-Albert-Str. 4, D-38678 Clausthal-Zellerfeld, Germany,

{dix, behrens}@in.tu-clausthal.de, michael.koester@tu-clausthal.de
M. Dastani at Intelligent Systems Group, Utrecht University, P.O.Box 80.089, NL-3508 TB

Utrecht, The Netherlands, mehdi@cs.uu.nl
P. Novák at Department of Cybernetics, Czech Technical University in Prague, Karlovo namesti

13, CZ-12135 Prague 2, Czech Republic, peter.novak@fel.cvut.cz

Abstract

TheMulti-Agent Programming Contest is an annual international event on pro-
gramming multi-agent systems: Teams of agents participate in a simulated cooper-
ative scenario. It started in 2005 and is organised in 2010 for the sixth time. The
contest is an attempt to stimulate research in the area of multi-agent system de-
velopment and programming by (i) identifying key problems in the field and (ii)
collecting suitable benchmarks that can serve as milestones for testing multi-agent
programming languages, platforms and tools.
This article provides a short history of the contest since it started and reports in
more detail on the cows and cowboys scenario implemented for the 2008, 2009 and
2010 contest editions. We briefly discuss the underlying technological background
and conclude with a critical discussion of the experiences and lessons learned.

1 Introduction

The Multi-Agent Programming Contest series (shortly Contest) is an attempt to
stimulate research in the area of multi-agent system development and programming
by 1) identifying key problems, 2) collecting suitable benchmarks, and 3) gathering
test cases which require and enforce coordinated action that can serve as milestones
for testing multi-agent programming languages, platforms and tools. In particular, the
Contest is implemented as an international on-line tournament between multi-agent
systems designed to solve a cooperative task in a dynamic environment. Here, we pro-
vide a detailed report of the last two editions of the Contest (the 4th and 5th subsequent
Contest edition which we organize already since 2006). Besides the description of the
last two Contest’s we also give an overview of the Contest series, the motivation be-
hind it and the underlying technological background.

1

mailto:\protect \T1\textbraceleft dix, behrens\protect \T1\textbraceright @in.tu-clausthal.de
mailto:michael.koester@tu-clausthal.de
mailto:mehdi@cs.uu.nl
mailto:peter.novak@fel.cvut.cz

Introduction

1.1 Motivation

Research communities such as artificial intelligence and autonomous agent and multi-
agent systems benefited tremendously in recent years from a rise of various successful
efforts towards establishing competitions to evaluate research results in more or less
realistic scenarios. Apart from comparing state of the art systems in a particular area,
such competitions also serve as a driver and catalyst of developments of the respective
research community. Competitions tend to generate challenging research problems and
thus push the boundaries of the established state of the art.

Apart from the already mentioned general ambitions of a research competition, the
main motivation behind the Contest was to provide a fair platform for comparison of
single- and multi-agent programming frameworks and thus taste, test and challenge the
current state of the art in the area. Historically, our main focus was on deliberative tech-
niques that are based on formal approaches and computational logics. It is this focus on
deliberation that resulted in some of the most characteristic features of the contest sce-
narios. The Contest scenarios are designed so that individual agents are embodied in a
dynamic environment and operate by sensing its state, deliberating about actions to be
selected, and performing the decided actions in it. In this contest, the underlying tech-
nical infrastructure implements an environment and manages the interaction between
individual agents and the environment. In particular, the contest infrastructure provides
agents some information about the state of the environment, allows them to deliberate
about their next step in a relatively wide time-window, takes the agents’ decisions and
realizes the effect of those decisions.

The second important feature of the latest Contest editions is the emphasis on sce-
narios which not only encourage cooperative problem solving, but rather enforce it by
their structure. The Contest organizers put gradually more and more emphasis on sce-
narios where coordination among agents is a necessary condition for succeeding in the
Contest.

Thirdly, unlike many other multi-agent competitions, in the design of the underly-
ing technical infrastructure of the Contest we took a rather liberal stance and made
sure not to impose any unnecessary constraints on the participating implementations.
Namely, first and foremost we are interested in evaluating novel approaches to imple-
mentation of multi-agent coordination, task sharing, and joint activities. But we do not
reject approaches that are programmed in a language that has nothing to do with agent
systems.

As a consequence, the design and implementation of a suitable multi-agent back-
end infrastructure, such as e.g., inter-agent communication middleware, the employed
programming language/framework as well as an execution platform, suitable for their
solution are left to creativity and competence of the participants. Except for a soft
requirement that the implemented solutions should satisfy the definition of a decentral-
ized multi-agent system, the Contest organizers do not impose any further constraints
on the systems taking part in the Contest.

Finally, while not being a hard criterion for defining success in the Contest, im-
plementation and facilitation of state-of-the-art techniques and approaches to program-

DEPARTMENT OF INFORMATICS 2

MULTI-AGENT PROGRAMMING CONTEST 2009

ming single, as well as multi-agent systems, related methodologies, design tools and
debugging techniques was always encouraged. However, in order to provide a com-
petitive basis for evaluation of system complying with this criterion, participation of
multi-agent solutions built on top of perhaps even radically different approaches was
never discouraged.

1.2 Paper Outline

In the next section we report on the past Contest editions and discuss related competi-
tions. Section 3 is giving an overview of related competitions. In Section 4 we provide
a detailed description of the underlying MASSim technical infrastructure.

In Sections 5 and 6„ the main part of this paper, the 2009 and 2010 editions of the
contest are described. Emphasis is put on the new scenario and how (we believe!)
it ensures cooperative behaviour among the agents. Section 7 addresses the lessons
learned in the past few years and gives an outlook to the future.

2 History of The Contest

The Multi-Agent Programming Contest was initiated in 2005 and its evolution can
be described by three distinct phases. The first phase of the contest, which consisted of
one edition, was based on the food gatherers scenario. This edition was organised in
2005 by M. Dastani and J. Dix (with the invaluable help of Peter Novák on all matters).
The second phase was based on the gold miners scenario and consisted of two editions.
These editions were organised in 2006 and 2007 by M. Dastani, J. Dix and P. Novák.
Finally, the third phase was based on the cow and cowboys scenario and consists of
three editions. The first edition was organised in 2008 by T. Behrens, M. Dastani,
J. Dix, and P. Novák, and the last two editions of the this phase were organised in 2009
and 2010 by the same group and, in addition, by M. Köster. Videos from all editions
of these contests, the software packages as well as further information can be found on
our web page1.

The first edition of the Multi-Agent Programming Contest2 [11] took place in
association with the CLIMA-VI workshop. The scenario was a grid-like world popu-
lated by food-tokens, a depot and agents. The goal was to collect food and store it in
the depot. Participants were required to submit a description of analysis, design and
implementation of a multi-agent system according to the constraints given by the orga-
nizers. Also the participants were required to submit an executable implementation of a
complete MAS, that is agents and environments. The submitted implementations were
then compared by an evaluation committee with respect to the following criteria:

1. original, innovative, and effective applications of computational logic techniques
in solving specific multi-agent issues identified in this application,

1http://multiagentcontest.org
2http://multiagentcontest.org/2005

3 Technical Report IfI-10-14

http://multiagentcontest.org
http://multiagentcontest.org/2005

History of The Contest

2. performance of the executable implementation, based on the amount of food that
is collected by the multi-agent system in a certain period of time (all were exe-
cuted on the same machine), and

3. quality of the description of analysis, design and implementation of the multi-
agent system, the elegance of its design and implementation, and the ease of
installation and execution of the program.

In 2005 we have had four participating teams with two winning teams. The two winning
implementations were by S. Coffey and D. Gaertner ([10]), from Imperial College Lon-
don, UK, and by C. Cares, X. Franch and E. Mayol ([8]), from Universitat Politecnica
de Catalunya, Spain, and Universidad de la Frontera, Temuco, Chile. The third team
consisted of R. Logie, J.G. Hall and K.G. Waugh ([25]), from Osaka Gakuin University,
Japan, and the Open University, UK. The last team that participated in this edition con-
sisted of E. Mateus, N. Goncalves and G. Bittencourt ([26]) from Federal University of
Santa Catarina, Brasil.

The 2005 contest edition scenario made it obvious that in order for a fair compari-
son of the participating implementations it is necessary to provide a standard technical
infrastructure to the participants. A single shared environment would make it easier to
directly compare different agent-implementations and would take away the burden to
deal with low-level technical details from the participants and allow them to concentrate
on the implementation of agents’ internal logic, which is the focus of the competition.

The second edition of Multi-Agent Programming Contest3 [12] took place in
2006 and was organised again in association with the CLIMA-VII workshop. This
edition was marked by the publication of an open, internet-based simulation platform
in which the environment was integrated. Thus, the contest scenario was decoupled
from an agent implementation platform and as a consequence, the technical threshold
for entering the contest was lowered as much as possible. In fact, the only techno-
logical requirement on the side of an agent team implementor was the capability to
handle TCP/IP socket connections and process relatively simple XML documents ex-
changed as messages. The simulation scenario was however still quite similar to the
food gathering scenario. Again there was a grid-like world and a depot for collecting
resources. Some obstacles were added to the environment and the food-resources have
been replaced by gold-pieces. Two teams of agents competed in one and the same en-
vironment for gold. Figure 1 shows a screenshot of the visualization together with a
description of depicted entities.

In the 2006 edition of the Contest we had only three officially participating teams
and a quick naive agent team implementation by the Contest organizers intended as a
base line benchmark implementation. The winner of the tournament was the team brazil
jointly developed by R. Bordini, J. Hübner, and D. Tralamazza [6]) from University of
Durham, UK, Universidade Regional de Blumenau, Brazil, and École Polytechnique
Fédérale de Lausanne, Switzerland. The second place took the team spain by C. Cares,
X. Franch and E. Mayol ([9]) from Universitat Politecnica de Catalunya, Spain, and

3http://multiagentcontest.org/2006

DEPARTMENT OF INFORMATICS 4

http://multiagentcontest.org/2006

MULTI-AGENT PROGRAMMING CONTEST 2009

Figure 1: The gold-miners scenario used in 2006 and 2007 editions. The maze is con-
structed of trees (solid obstacles) and in its centre there is the depot for the collected
gold nuggets. There are two teams of agents/miners (red and blue) navigating within
the grid and searching for the gold nuggets scattered around.

5 Technical Report IfI-10-14

History of The Contest

Universidad de La Frontera, Chile. The team germany developed by S. Schiffel and
M. Tielscher ([30]) of Dresden University of Technology, Germany finished third place.
In fact, curiously, the unofficially competing benchmark agent team, CLIMABot (de-
veloped within one evening by our former student Michael Köster just for testing pur-
poses), managed to achieve the highest score.

The third edition ofMulti-Agent Programming Contest4 [13], organized in 2007
in association with the ProMAS’07 workshop, was the second installment of the gold
miners scenario. The environment has been improved in only one detail: Agents could
be pushed away by other agents. We implemented this feature in order to hinder im-
plementation of defensive depot blocking strategies and in turn to increase the compet-
itiveness of the scenario. There were six participating teams (the order of the teams in
the list reflects their final ranking in the competition).

1. JiacIVteam by A. Heßler, B. Hirsch, and J. Keiser from DAI-Labor, Technische
Universität Berlin, Germany [17].

2. microJiacteam by E. Tuguldur, and M. Patzlaff from DAI-Labor, Technische Uni-
versität Berlin, Germany [33].

3. Jasonteam by J.F. Hübner from Universidade Regional de Blumenau, Brazil, and
R.H. Bordini from Durham University, United Kingdom [20].

4. FLUXteam by S. Schiffel, M. Thielscher, and D. Thu Trang from Dresden Uni-
versity of Technology, Germany [31].

5. APLteam by L. Astefanoaei, C.P. Mol, M.P. Sindlar, and N.A.M. Tinnemeier
from Utrecht University, Netherlands [1].

6. JACKteam by S. Sardina, and D. Scerri from RMIT University, Australia.

The idea behind the simulation scenario employed in the 2006 edition was to con-
front the participants with challenges for the development of individual agents. The
core problems were basically obstacle avoidance and environment exploration. During
the two editions employing the gold miners scenario it became clear that the scenario
has been relatively easily handled by agents: Using cooperative behaviours within a
team did not yield significantly better results than solutions based on perfectly self-
interested agents. In fact the scenario made it easy to develop agent-teams that do not
interact at all, but still solve the problem and achieve a high-score merely due to effi-
cient path-planning and information sharing. Reflection on these shortcomings resulted
in a redesign of the simulation scenario and a proposal for a new type of game.

We organized the fourth edition of Multi-Agent Programming Contest5 [4] in
the spring 2008 again in association with the ProMAS’08 workshop. This edition was
based on the new cows and cowboys scenario. In this new scenario, the environment
became more dynamic: The individual agents were indirectly forced to cooperate and

4http://multiagentcontest.org/2007
5http://multiagentcontest.org/2008

DEPARTMENT OF INFORMATICS 6

http://multiagentcontest.org/2007
http://multiagentcontest.org/2008

MULTI-AGENT PROGRAMMING CONTEST 2009

0

1

2

3

4

5

6

7

8

9

10

11

Figure 2: The cows and cowboys scenario employed in 2008 and 2009 contest editions.
The green cells represent obstacles, there are two rectangular corrals each belonging to
one of the two agent teams (red and blue) and finally a number of cows scattered around
the grid.

7 Technical Report IfI-10-14

History of The Contest

coordinate their actions in order to achieve any positive results. The agents were op-
erating in a grid-like environment again featuring trees and bushes as obstacles. The
environment contained cows, active entities in themselves, that moved in the environ-
ment. Their behavior was implemented by a relatively simple flocking-algorithm based
on a model of attraction and repulsion. The cows were modeled so that they were
strongly repelled by (or scared of) agents in the environment but they were also at-
tracted to each other at the same time. The goal of the agent teams was to find cows,
get close to them and push (scare) them into a corral belonging to each individual team.
Each cow that ended up in a corral scored one point. In comparison to the past scenario,
the set of agent-actions has been restricted to moving only and their range of view has
been enlarged. Figure 2 shows a screenshot of the cows and cowboys scenario.

In this edition of the contest we had seven participating teams. The following list
reflects their final ranking in the competition.

1. JIAC-TNG by A. Heßler, J. Keiser, T. Küster, M. Patzlaff, A. Thiele, and Erdene-
Ochir Tuguldur from Technische Universität Berlin, Germany [19].

2. Jadex by G. Balthasar, J. Sudeikat and W. Renz from Hamburg University of
Applied Sciences, Germany [2].

3. SHABaN by A.T. Rahmani, A. Saberi, M. Mohammadi, A. Nikanjam, E. Adeli
Mosabbeb and M. Abdoos, from Iran University Of Science and Technology,
Iran [28].

4. Krzaczory by J. Szklarski from Institute of Fundamental Technological Research,
Poland [32].

5. Jason by J. Hübner and G. Picard from ENS Mines of Saint Etienne, France, and
R. Bordini from University of Durham, UK [22].

6. Bogtrotters by M. Dragone, D. Lillis, C. Muldoon, R. Tynan, R.W. Collier and
G.M.P. O’Hare from University College Dublin, Ireland [15].

7. KANGAL from Bogazici University, Istanbul, Turkey.

We organized the fifth edition ofMulti-Agent Programming Contest6 in 2009 in
association with the CLIMA-X workshop. In this edition, the previous version of the
cows and cowboys scenario was slightly extended. The cows were not removed from
the environment anymore upon entering a corral. We also introduced a new feature:
Fences that could be opened via switches. Finally the flocking-algorithm of the cows
was adapted to improve the cow behaviour.

This minor redesign of the old 2008 edition scenario was again aimed at increasing
competitiveness of the scenario as well as to increase the need for cooperation. In
particular, persistence of cows in corrals enabled more aggressive game strategies, such
as entering the opponents corral and pushing the collected cows away from it. Secondly,

6http://multiagentcontest.org/2009

DEPARTMENT OF INFORMATICS 8

http://multiagentcontest.org/2009

MULTI-AGENT PROGRAMMING CONTEST 2009

due to the introduction of fences, the agent team had to coordinate its members in order
for one of the cowboys to keep a fence open while the remaining team members were
pushing cows along the desired trajectory. Due to the improvements in the cow-mobility
model, it was also more difficult to separate an individual cows from the herd. We
present the details in section 5.

Finally, in 2010, we restructured the team and established a Steering Committee. Its
main task is to collect and maintain the know how of the Contest organization and to
overlook the Contest edition organization and advises the organizing committee in or-
der to ensure persistent striving for the long-term aims. The Organization Committee,
on the other hand, takes care for the operational aspects of the Contest organization. It
is appointed by the Steering Committee for the purpose of organizing the single upcom-
ing edition of the Contest, possibly associated with another workshop or conference.

Considering the scenario we only changed some minor details to enforce even more
the cooperation of the agents. Also, we modified the calculation of the score. While in
the previous scenarios only the number of cows at the end of the game were counted,
for the Contest in 2010 we introduced a new measurement based on the average of
captured cows per step. This way, we alleviated the effectiveness of bad strategies like
stealing cows in the last few steps.

The sixth edition ofMulti-Agent Programming Contest7 is described in section 6.

3 Survey of Related Competitions

Our attempt to foster research in development of multi-agent systems for solving coop-
erative tasks in highly dynamic environments is by far not a solitary endeavour. In fact,
the RoboCup soccer challenge8 is probably the most prominent series of competitions
in the wider AI community, which stems from a motivation similar to ours. However,
unlike theMulti-Agent Programming Contest, competitions such as RoboCup soc-
cer are aimed at benchmarking the state of the art in robotics, multi-robotics, and their
integrations. As a consequence, the RoboCup soccer leagues, whether real or sim-
ulated, do not particularly focus on the state-of-the-art approaches based on formal
methods of deliberation and complex planning. Such techniques are not yet mature
enough to compete with more ad-hoc robot control approaches in scenarios encourag-
ing extremely fast, though imprecise decision making in (almost) continuous spaces,
such as the game of soccer.

Unlike RoboCup soccer leagues, the RoboCup Rescue league9 aims at benchmarking
a similar segment of AI approaches applicable in multi-agent systems. In its scenario,
the concepts of team cooperation and coordination are extremely important. However,
factors such as the complexity of the simulated environment (complex maps of real-
world cities), hard constraints imposed in the scenario, such as e.g., the limited band-
width of inter-agent communication and the necessity to execute the resulting multi-

7http://multiagentcontest.org/2010
8http://www.robocup.org/
9http://www.robocuprescue.org/

9 Technical Report IfI-10-14

http://multiagentcontest.org/2010
http://www.robocup.org/
http://www.robocuprescue.org/

The MASSim Platform

agent teams on the organizers’ technical infrastructure significantly increase the thresh-
old of technological difficulty participants have to overcome. In Multi-Agent Pro-
gramming Contest such issues are completely at a the liberty of the Contest partici-
pants and engineering innovation. Creativity in these issues is welcomed as a first-class
issue to be evaluated in the analysis of the tournament results.

Another example of a multi-agent competition similar in nature to theMulti-Agent
Programming Contest is theORTS Real-Time Strategy Game AI Competition10. While
the motivation of this series of competitions is similar to ours, the focus of the ORTS
competition is on adversarial reasoning in real-time strategy games. Hence, again the
speed of the participating systems matters and the evaluation scenarios presume differ-
ent type of reasoning capabilities in the implemented agent teams. Although a simula-
tion ofORTS evolves in a step-wise fashion similar to theMulti-Agent Programming
Contest, the pace is significantly higher. ORTS updates the simulation 8 times per sec-
ond, whereas we update once every 4 seconds.

Finally, a well established tournament of multi-agent systems is the Trading Agents
Competition11. This contest is designed to spur research on common problems, pro-
mote definitions of benchmarks and standard problem descriptions, and showcase cur-
rent technologies. The agents compete against each other in challenging market games.
Each edition of this contest consists of various market games such as Auction games,
Market Design games, and Supply Chain Management games. Unlike theMulti-Agent
Programming Contest, the main focus of this tournament is on models of economic
behaviour aiming at maximizing (expected) revenue or profits.

4 The MASSim Platform

The MASSim (Multi-Agent Systems Simulation) platform is a testbed environment that
we designed specifically for the needs of the Multi-Agent Programming Contest
tournament series. Its aim is to enable a fair evaluation of coordination and cooperation
approaches of multi-agent systems featuring rather complex deliberative agents. To this
end we employ round-based game simulations with the intention to benchmark various
agent-based approaches by letting agent teams compete against each other.

The platform itself is implemented in Java running on each operating system that
provides a Java runtime environment. Participants’ teams are connected via TCP/IP
and exchange plain XML messages with the simulation server. This allows developers
to connect their multi-agent system (possible written in a different programming lan-
guage) to the server by implementing socket communication and processing relatively
simple protocol based on XML messages.

The actual simulation scenario is programmed as a plug-in. The server offers an
interface allowing to replace the simulation by exchanging a few classes. As a result, a
simulation developer only has to care for the core game properties and not for the low-
level issues connected with the server-agents communication nor with the visualization

10http://skatgame.net/mburo/orts/index.html
11http://www.sics.se/tac

DEPARTMENT OF INFORMATICS 10

http://skatgame.net/mburo/orts/index.html
http://www.sics.se/tac

MULTI-AGENT PROGRAMMING CONTEST 2009

of the game. This permits us to rapidly develop and modify the simulation scenarios
and to use different simulations by just loading different configuration files.

During a tournament, a live broadcast of the running simulations as well as the lat-
est results of the tournament are accessible by the participants through an optionally
installed web interface. Besides that, for debugging purposes the MASSim toolkit also
provides a simpler Java tool able to connect to a running MASSim tournament server
and retrieve the actual simulation status. Finally, the MASSim server visualization
component records all the simulation runs as a series of SVG drawn snapshots which
are afterwards replayable off-line in an SVG-enabled web browser.

Simulation
Cycle

Java RMI Visualization
Connection

Manager

Scenario
Simulation

Plug-in

MASSim Platform

Web server Team 1 Team 2Cow monitor

Figure 3: MASSim platform overview.

Figure 3 summarizes the technical infrastructure of MASSim . In detail, the platform
consists of the following components:

• Core: is the central component that coordinates the interaction of the other com-
ponents and implements the tournament schedule.

• Simulation plug-in: describes a discrete game and logically contains the environ-
ment of the agents. This component is based on a plug-in architecture that allows
the implementation and use of new scenarios in a simple way.

• Agent-server communication: manages the communication between the server
and the agents. The communication relies on the exchange of XML messages.
The agents receive perceptions and can act in the environment by encoding their
actions as XML messages and transmitting them to the server.

11 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2009: Cows and Cowboys

• Teams of agents: agents connect to the server via TCP/IP, and communicate using
XML-messages.

• Visualization: this component renders each state of the evolution of the environ-
ment to a SVG file. The SVG files can then be viewed in a manner that resembles
videos. We also offer a script to convert these files to a flash movie.

• Web server: provides online-monitoring functionality. People can use the web in-
terface to monitor the progress of a tournament, including the current tournament
results and the ongoing matches and simulations.

• Cow monitor: is provided for debugging purposes.

The modularity of the platform allows to use this system in the classroom. Besides
the availability of a multi-agent system the students only have to start the server and
the monitor in order to develop new agents. This, in combination with the competition
among the students, can help to popularize agent orient programming and the approach
of multi-agent systems in general.

Moreover, the scenarios implemented in the Multi-Agent Programming Contest
can also be seen as IT ecosystems [14], i.e., systems composed of a large number of dis-
tributed, decentralized, autonomous, interacting, cooperating, organically grown, het-
erogeneous, and continually evolving subsystems. While the MASSim platform facili-
tates the interaction of different agent teams, each agent team can be described as well
as a autonomous system containing smaller systems (the agents), so that, in the end,
we get a hierarchy of systems. As the participants are from different universities it’s
highly decentralized and because of the different multi-agent platforms it is also het-
erogeneous. In the future we even plan to include cooperation between different teams
in order to strengthen the interaction.

5 The Multi-Agent Programming Contest 2009: Cows and
Cowboys

After presenting the history and the underlying technological framework we proceed
with describing the cows and herders scenario implemented for the 2009 Contest edi-
tion. To make a contest scenario more accessible for first-timers, we often provide a
background story:

An unknown species of cattle was recently discovered in the unexplored
flatlands of Lemuria. The cows have some nice features: Their carbondioxyde-
and methane-output is extremely low compared to the usual cattle and
their beef and milk are of supreme quality and taste. These facts definitely
caught the attention of the beef- and dairy-industries. The government
decided to allow the cows to be captured and bred by everyone who is in-
terested and has the capabilities. Several well-known companies decided

DEPARTMENT OF INFORMATICS 12

MULTI-AGENT PROGRAMMING CONTEST 2009

to send in their personnel to the fields to catch as many of them as possible.
This led to an unprecedented rush for cows. To maximise their success the
companies replaced their traditional cowboys by artificial herders.

To solve this task each team controlled a group of herders trying to direct the cows
into their own corral. The team with the highest number of cows in the corral at the
end won the match. In the following subsections we present a detailed description of
the Multi-Agent Programming Contest 2009. Additional information as well as
the software (including all environments from the contest) are published at http://
multiagentcontest.org/2009. The concrete structure of the XML messages
are described in the appendix.

5.1 General Description

As always, each team competes against all other teams in a series of matches. A single
match between two competing teams consists of several simulations. A simulation be-
tween two teams is a competition between them with respect to a certain configuration
of the environment. Winning a simulation yields 3 points for the team, a draw is worth 1
point and a loss 0 points. The winner of the whole tournament is evaluated on the basis
of the overall number of collected points in all the matches during the tournament.

As explained in the previous sections, the agents from each participating team are
executed locally (on the participant’s hardware) while the simulated environment, in
which all agents from competing teams perform actions, is run on the remote contest
simulation server run by the contest organizers. The interaction/communication be-
tween agents from one team is managed locally, but the interaction between individual
agents and their environment (run on the simulation server) are via Internet. Partici-
pating agents connect to the simulation server that provide the information about the
environment.

Each agent from each team connects to and communicates with the simulation server
using one TCP connection. After the initial phase, during which agents from all com-
peting teams connect to the simulation server, identify and authenticate themselves and
get a general match information, the competition starts. The simulation server controls
the competition by selecting the competing teams and managing the matches and simu-
lations. In each simulation, the simulation server, in a cyclic fashion, provides sensory
information about the environment to the participating agents and expects their reac-
tions within a given time limit. After a finite number of steps the simulation server
stops the cycle and the participating agents receive a notification about the end of a
simulation. Then the server starts a new simulation possibly involving the same teams.

5.2 Cooperative Cows Herding

The environment is a rectangular grid consisting of cells. The size of the grid is spec-
ified at the start of each simulation and is variable. However, it cannot be more than
150× 150 cells. The [0,0] coordinate of the grid is in the top-left corner (north-west).

13 Technical Report IfI-10-14

http://multiagentcontest.org/2009
http://multiagentcontest.org/2009

The Multi-Agent Programming Contest 2009: Cows and Cowboys

The simulated environment contains two corrals—one for each team—which serve as
a location where cows should be directed to. Furthermore there can be fences that can
be opened using switches.

Figure 4: The environment is a grid-like world. Agents (red and blue) are steered by the
participants. Obstacles (green) block cells. Cows (brown ovals) are steered by a cow-
algorithm. Fences (x-shapes) can be opened by letting an agent stand on a reachable
cell adjacent to the button (slash-shaped). Cows have to be pushed into the corrals (red
and blue rectangles).

Each cell of the grid can be occupied by exactly one of the following objects:

• Agents are steered by the participants and can move from one cell to an adjacent
cell.

• An obstacle blocks a cell.

• Cows are steered using a flocking algorithm. They can move from one cell to
an adjacent cell. Cows tend to form herds on free areas, keeping distance to
obstacles. If an agent approaches, cows get frightened and flee.

• Fences can be opened using a button. To open a fence and keep it open an agent
has to stand on a cell adjacent to the respective button. Thus, a switch is activated
if the agent is next to the switch and:

DEPARTMENT OF INFORMATICS 14

MULTI-AGENT PROGRAMMING CONTEST 2009

1. the current cell (where the agent is in) does not contain an open or closed
fence, and

2. the position of the agent is not diagonal to the switch.

Note that an agent cannot open a fence and then definitely go through it. Instead it
needs help from another friendly agent. Moreover, when fences close, agents and cows
that stand on a fence cell get pushed into a free cell. There are two corrals, which
are rectangular areas, one for each team. Cows have to be pushed into these corrals.
Each teams learns the position and the dimensions of its corral at the beginning of each
simulation.

5.3 Agent Perceptions and Actions

Each agent perceives the contents of the cells in a fixed vicinity around it. It can dis-
tinguish between empty cells, obstacles, cows (distinguished by unique identifiers),
fences, buttons, and other agents. The participants will learn the position and dimen-
sions of their team’s corral at the beginning of each simulation. Each agent can move
to one of the adjacent cells if the cell is not blocked by an obstacle, cow, fence, button
or another agent. Each agent perceives a square of cells of size 17×17 with the agent
in the center. Each team has 10 agents.

Each agent reacts to the received sensory information by indicating which action
(including the skip action) it wants to perform in the environment. If no reaction is
received from the agent within the given time limit, the simulation server assumes that
the agent performs the skip action. Agents have only a local view of their environment,
their perceptions can be incomplete, and their actions may fail.

The simulation server can omit information about particular environment cells, how-
ever, the server never provides incorrect information. Also, agent’s action can fail. In
such a case the simulation server evaluates the agent’s action in the simulation step as
the skip action.

5.4 Cow Movement Algorithm

Although we do not consider the details of the cow movement algorithm to be very
important, we will sketch it here. The complete algorithm is available in the source-
code.

For each cow the algorithm considers all the cells that can be reached by it in one
step. Then the weight of these cells is computed. The cow moves to that cell whose
weight is maximal. If there are several maxima, the cow moves randomly to one of
them.

The weights for attractive cells – empty space, other cows, and corral cells – are
positive. The weights for repellent cells – agents and obstacles (trees, gates) – are
negative. Finally, cows are slower than agents. They move every third step.

15 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2009: Cows and Cowboys

Algorithm 1 Cow movement algorithm.
Require: a cow represented by its position vector c ∈ N×N

1: let N be the set of the 9 cells adjacent to c, including c;
2: remove from N all those cells that are not reachable;
3: calculate the weights of all cells n ∈ N;
4: determine the set M ⊆ N, where the weight for each m ∈M is maximal;
5: randomly pick a cell m ∈M;
6: move the cow to m;

Algorithm 2 Calculate the weight of a given cell.
Require: a cell represented by its position vector n ∈N×N, and a cow-visibility range

r ∈ N
1: determine the set C of all cells that are a in the rectangle [nx−r,ny−r,nx +r,ny +r]

and that are on the map;
2: set ret to 0;
3: for all c ∈C do
4: calculate d the distance between c and n;
5: get the weight w of c in respect to the cell content;
6: add w/d to ret;
7: end for
8: return ret

5.5 Comparison toMulti-Agent Programming Contest 2008

The 2009 edition of the Multi-Agent Programming Contest is essentially the same
as in 2008 except for four minor differences:

• Cows are not removed from the environment if they enter the corrals. The number
of cows in the corrals after the last step counts.

• The cow movement algorithm has been improved in order to yield a more con-
vincing behavior of the cows.

• The new scenario also introduces fences.

• The team-size has been increased.

5.6 Communication Protocol

5.6.1 General Agent-2-Server Communication Principles

The agents from each participating team are executed locally (on the participant’s hard-
ware) while the simulated environment, in which all agents from competing teams per-
form actions, runs on the remote contest simulation server. Agents communicate with
the contest server using standard TCP/IP stack with socket session interface. Agents

DEPARTMENT OF INFORMATICS 16

MULTI-AGENT PROGRAMMING CONTEST 2009

communicate with the server by exchanging XML messages. Messages are well-formed
XML documents. The exact XML structure is described in the appendix.

5.6.2 Communication Protocol Overview

The tournament consists of a number of matches. A match is a sequel of simulations
during which two teams of agents compete in several different settings of the environ-
ment. However, from an agent’s point of view, the tournament consists of a number
of simulations in different environment settings and against different opponents. The
tournament is divided into the following three phases.

1. the initial phase,

2. the simulation phase, and

3. the final phase.

During the initial phase, agents connect to the simulation server and identify themselves
by username and password (AUTH-REQUEST message). As a response, agents receive
the result of their authentication request (AUTH-RESPONSE message) which can ei-
ther succeed, or fail. After successful authentication, agents should wait until the first
simulation of the tournament starts. Below is a picture of the initial phase (UML-like
notation).

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

At the beginning of each simulation, agents of the two participating teams are noti-
fied (SIM-START message) and receive simulation specific information:

• simulation ID,

• opponent’s ID,

• grid size,

• corral position and size,

• line of sight, and

• number of steps the simulation will last.

17 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2009: Cows and Cowboys

In each simulation step each agent receives a perception about its environment
(REQUEST-ACTION message) and should respond by performing an action (ACTION
message). Each REQUEST-ACTION message contains

• information about the cells in the visibility range of the agent (including the one
agent stands on),

• the agent’s absolute position in the grid,

• the current simulation step number,

• the current number of cows in the team’s corral, and

• the deadline for responding.

The agent has to deliver its response within the given deadline. The ACTION mes-
sage has to contain the identifier of the action, the agent wants to perform, and action
parameters, if required. Below is a picture of the simulation phase:

Server Agent

SIM-START

REQUEST-ACTION

ACTION

SIM-END

loop: Simulation Step Cycle

When the simulation is finished, participating agents receive a notification about its
end (SIM-END message) which includes the information about the number of caught
cows, and the information about the result of the simulation (whether the team has won
or lost the simulation).

All agents which currently do not participate in a simulation have to wait until the
simulation server notifies them about either 1) the start of a simulation, they are going
to participate in, or 2) the end of the tournament. At the end of the tournament, all
agents receive a notification (BYE message). Subsequently the simulation server will
terminate the connections to the agents. Below is a picture of the final phase.

DEPARTMENT OF INFORMATICS 18

MULTI-AGENT PROGRAMMING CONTEST 2009

Server Agent

BYE

5.6.3 Reconnection

When an agent loses connection to the simulation server, the tournament proceeds with-
out disruption, only all the actions of the disconnected agent are considered to be empty
(skip). Agents are themselves responsible for maintaining the connection to the simu-
lation server and in a case of connection disruption, they are allowed to reconnect.

Agent reconnects by performing the same sequence of steps as at the beginning of
the tournament. After establishing the connection to the simulation server, it sends
AUTH-REQUEST message and receives AUTH-RESPONSE. After successful authen-
tication, server sends SIM-START message to an agent. If an agent participates in a
currently running simulation, the SIM-START message will be delivered immediately
after AUTH-RESPONSE. Otherwise an agent will wait until a next simulation in which
it participates starts. In the next subsequent step when the agent is picked to perform an
action, it receives the standard REQUEST-ACTION message containing the perception
of the agent at the current simulation step and simulation proceeds in a normal mode.
Below is a picture for the reconnection phase.

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

5.7 Participants and Approaches

We will now introduce all the participating teams in an alphabetical order.
The first team was AF-ABLE formed by Rem Collier, Mauro Dragone, David Lillis,

Jennifer Treanor, Howell Jordan and Greg O’Hare from University College Dublin, Ire-
land [23]. Their solution architecture consists of AFAPL2 agents running on Agent Fac-
tory platform. The agents’ low-level behaviours (explore, open fence, etc.) were written
in Java. A centralized task allocation method was used that is based on costs and values.
The behaviour code appeared to be rather complex and buggy and caused inconsistent

19 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2009: Cows and Cowboys

performance. The team did not implement successful offensive behaviours, thus many
cows conceded. Also there were no defensive behaviours, thus many successfully-
herded cows escaped from the corral or got ’stolen’ by other teams. The team considers
to move more logic to the agent layer for the next contest edition.

The second team was Jadex@HAW formed by Gregor Balthasar, Jan Sudeikat, and
Wolfgang Renz from MMLab, HAW Hamburg, Germany [3]. It was their second time
participating in the Multi-Agent Programming Contest. The team used the Jadex
BDI-agents middleware (v0.96). All algorithms for planning were implemented in Java.
They used decentralized coordination instead of the centralized coordination that they
did use in their first participation. They utilized the Tropos methodology and toolsets
as a guideline. This yielded a more stable multi-agent system that needed nearly no
supervision, and it increased the autonomy of the single agents drastically. Difficulties
encountered were the debugging of decentralized coordination and covering all situa-
tions that can appear during a simulation.

The third team was Jason-DTU formed by Niklas Skamriis Boss, Andreas Schmidt
Jensen and Jørgen Villadsen from the Department of Informatics and Mathematical
Modelling, Technical University of Denmark [7]. Their starting point was a new ad-
vanced AI course in spring 2009 with more than 50 students. The course included two
lessons and a project on logic-based agent programming using Jason. Algorithms such
as A∗ were implemented in Java. The Prometheus methodology was used as a guideline
for development. The code from last year for the integration with the contest simulator
was provided by the 2008 Jason team (cf. RomanFarmers). The Jason framework ap-
peared to allow for easy implementation of agents with events and plans. Three kinds
of cowboys were developed: herders, a scout and a leader. A design with a single leader
delegating targets leads to a less autonomous approach. The choice to heavily limit the
number of cows in a single cluster is probably not optimal. The team did not implement
a strategy to prohibit the opposing team from scoring points.

The fourth team was JIAC-V formed by Axel Heßler, Thomas Konnerth, Jan Keiser,
Benjamin Hirsch, Tobias Kuester, Marcel Patzlaff, Alexander Thiele, and Tuguldur
Erdene-Ochir from Technical University Berlin, Germany [18]. It was their third par-
ticipation in the Multi-Agent Programming Contest. The JIAC meta-model was
the frame for design and implementation. The team has implemented an ontology-
based world model (beliefs and communication vocabulary). Domain dependent (cow-
boy) capabilities (plans, rules) were aggregated to roles, composed with standards roles
(memory, communication) to form the agent and then executed by JIAC runtime. In
this implementation, they have used decentralized coordination and cooperation. Their
own agile MIAC methodology and their JIAC Toolipse were used to guide the process.
According to this team, theMulti-Agent Programming Contest is an interesting sce-
nario for teaching agent-oriented principles. The team found and fixed many bugs in
their framework. This concerned amongst other things the lifecycle and execution cy-
cle of agents and the interpretation of the world model. They also tuned several core
components (performance and reliability), which lead to a performance improvement
by factor 8. Finally, they implemented many features that make the life of the agent-
oriented programmer easier (easier to learn, easier to use, easier to debug, and easier to

DEPARTMENT OF INFORMATICS 20

MULTI-AGENT PROGRAMMING CONTEST 2009

deploy).

The fifth team was microJIAC formed by Anand Bayarbilig and Erdene-Ochir Tugul-
dur from DAI-Labor, TU-Berlin, Germany [34]. They used the MicroJIAC agent frame-
work, which has been developed by the DAI-Labor. They implemented model-based
reflex agents, which consist of a world model and rules. All agents are equal and there is
no specialised agent. The agents are fully self-organized and coordination/cooperation
is reached by sharing perceptions/intentions. The scenario appeared to be too complex
for one programmer alone. Driving a single cow does not lead to a very high score.
They found debugging self-organization to be quite complicated.

The sixth team was RomanFarmers formed by Jomi F. Hübner from Federal Univer-
sity of Santa Catarina, Brazil, Rafael H. Bordini from Federal University of Rio Grande
do Sul, Brazil, Gustavo Pacianotto Gouveia, Ricardo Hahn Pereira, Jaime S. Sichman
from University of Sao Paulo, Brazil, Gauthier Picard from Ecole des Mines de Saint-
Etienne, France, and Michele Piunti from Universita di Bologna, Italy [21]. The design
was based on three paradigms and abstraction levels: 1) Organisation Oriented Pro-
gramming (MOISE) to define concepts such as groups, shared plans and goals to herd,
explore, and pass fences, 2) Agent Oriented Programming (Jason) to define which plans
should be selected and performed by the agents, and 3) Object Oriented Programming
(Java) to define algorithms, for example, to find paths and cluster of cows. Participat-
ing in this contest has resulted in some improvement in Jason and MOISE. There was
only one technical bug found in Jason. The main difficulties were debugging (several
agents, tools, languages, decentralisation) and tuning of parameters (clusters max size
and number of cows per cowboy).

The seventh team was smaperteam formed by Chenguang Zhou from RMIT, Aus-
tralia [36]. It was the first time for the team to participate in the Multi-Agent Pro-
gramming Contest. The team used the JACK intelligent agents framework for im-
plementing the agents. The participants of this team did indicate that debugging their
multi-agent program is a difficult task. Herder agents were still centralized. They com-
municate with a coordinator which did path finding for them using the A∗ algorithm.
The system was not stable and needed more testing.

The eight and final team was unknown formed by Slawomir Deren and Peter Novak
from TU Clausthal, Germany12. The team used the Jazzyk language with three mod-
ules. They used Open Agent Architecture for exchanging of messages. The agent team
consisted of two subteams, each subteam consisted of one leader and four herders. The
leader searched for the cows and coordinated the herders agents. There were two agents
that were responsible for opening fences. Agents communicated in each simulation step
and shared the information. The leader computed the moving direction of cows using
A∗. The agents were able to drive only one group of cows, the general performance of
the agents was inefficient, and the amount of leaders was too small for searching.

12Note, that this team did not participate officially. That is, the team was introduced just as a kind of bot in
the tournament.

21 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2010: Cows and Cowboys

5.8 Results

The JIAC team, the winner of the Multi-Agent Programming Contest 2007 and
2008, won the tournament again. While in 2007 there was a big gap between the first
and the second place, in 2008 the Jadex team got quite close to JIAC: The Jadex team
was only three points behind the JIAC team.

The following overview shows how many cows were gathered and how many points
each team scored. It is the number of points that decides who wins.

1. JIAC V (1627 cows, 60 points)

2. Jadex@HAW (1345 cows, 57 points)

3. Roman Farmers (840 cows, 37 points)

4. Jason DTU (433 cows, 30 points)

5. smaperteam (194 cows, 23 points)

6. Micro JIAC (363 cows, 21 points)

7. AFABLE (468 cows, 20 points)

8. unknown (12 cows, 1 point)

As one can see the field of participants is divided into three subgroups: JIAC and
Jadex were dominating the contest while Roman Farmers and Jason DTU performed
well but were not able to keep track of the first two teams. Finally, the matches in
the third group resulted in some competitive games between the teams smaperteam,
Micro JIAC and AFABLE. But even the last team succeeded to steal one point from the
smaperteam.

6 The Multi-Agent Programming Contest 2010: Cows and
Cowboys

In 2010, we used basically the same scenario and changed just some small rules. There-
fore, we only present an overview here and refer for the details to the corresponding sec-
tion of the Contest 2009 respective the appendix. The fiction of the unknown species
of cattle had to serve as background story again. Each team controlled once more a
group of cowboys steering cows into their own corral. But this time not the team with
the highest number of cows in the corral at the end won the match but that team that
caught the most cows in average regarding the number of steps. Also, teams consist of
20 agents instead of 10. Additional information as well as the software (including all
environments from the contest) are published at http://multiagentcontest.
org/2010.

DEPARTMENT OF INFORMATICS 22

http://multiagentcontest.org/2010
http://multiagentcontest.org/2010

MULTI-AGENT PROGRAMMING CONTEST 2009

Each team competed against all other teams in a series of matches. A single match
between two competing teams consisted of several simulations. Winning a simulation
yielded 3 points for the team, a draw was worth 1 point and a loss 0 points. The winner
of the whole tournament was evaluated on the basis of the overall number of collected
points in all the matches during the tournament.

The environment was a rectangular grid consisting of cells. The simulated envi-
ronment contained two corrals—one for each team—which served as a location where
cows should be directed to. Furthermore there were fences that could be opened us-
ing switches. Each cell of the grid could be occupied by exactly one of the following
objects: Agents, obstacles, cows and fences. Figure 5 depicts a map used in the contest.

Figure 5: The environment is a grid-like world. Agents (red and blue) are steered by the
participants. Obstacles (green) block cells. Cows (brown ovals) are steered by a cow-
algorithm. Fences (x-shapes) can be opened by letting an agent stand on a reachable
cell adjacent to the button (slash-shaped). Cows have to be pushed into the corrals (red
and blue rectangles).

The Agent perceptions and the actions available were the same as in 2009. Each
agent perceived the content of the cells in a radius of 8, i.e., a square of size 17× 17
with the agent in the centre. It reacted to the received sensory information by indicat-
ing which action (move or skip action) it wants to perform in the environment. If no

23 Technical Report IfI-10-14

The Multi-Agent Programming Contest 2010: Cows and Cowboys

reaction was received from the agent within the given time limit, the simulation server
assumed that the agent performed the skip action. Agents had only a local view of their
environment, their perceptions could be incomplete, and it was possible that actions
fail, however the server never provided incorrect information.

Concerning the cow movement algorithm we changed some parameters to make cow
steering more challenging. The cows were moving in each step and they were choosing
direction more randomly.

The communication protocol was only changed in a minor way to cope with the new
average score. Details can be found in the protocol description available at our home-
page13. To sum up, for the Multi-Agent Programming Contest 2010 we slightly
changed the environment, so that cows were moving faster, the team-size was increased
to 20 agents and the score was calculated differently. Instead of determining the result
of a simulation only at the end, we calculated an average score.

6.1 Participants and Approaches

We will now introduce all the participating teams in an alphabetical order. The first
team was Argonauts formed by A. Löwen, B. Jablkowski, W. Cai, D. Hölzgen, E. Böh-
mer, F. Bienek, M. Kruse, S. Broszeit, T. Vengels from Technical University Dortmund,
Germany[5]. They were using a modified Jason framework combined with DLV. Col-
laboration was done by the means of the role system specified by Gaia. The assignment
was steered by the agents and not by a centralized master agent.

The second team was Brainbug formed by Fabian Linges, Sönke Sieckmann, Erik
Stürmer, Jonathan Ziller, Axel Heßler from Technical University Berlin, Germany[24].
The team has been developed in a student course. It was their fourth participation in
theMulti-Agent Programming Contest. The JIAC V meta-model was the frame for
design and implementation. This time they used a centralized approach with a manager
agent collecting the perceptions of all agents and thus maintaining one world model
for all agents and coordinating the behaviour of the team. This additional agent was
responsible for deciding the overall strategy of the normal agents that connect to the
MASSim platform. To keep some degree of independence in the normal agents they
implemented a role system. In each step the manager agent assigned to each agent a
role (explorer, switcher, shepherd) and a task. The agent then decided by itself what it
has to do in order to accomplish its goal.

The third team was CowRaiders formed by Bettina Feldheim, Erik Petzhold, Michael
MÃŒller, Verena Klös and Marcel Patzlaff from DAI-Labor, TU-Berlin, Germany and
Jonas Hartmann from Universidade Federal do Rio Grande do Sul, Brazil. The team
has been developed in a student course. They used a centralised coordination approach
by designing an additional coordination agent that awaited perceptions of each nor-
mal agent and answered with appropriate instructions. The coordination agent had
the complete knowledge of the team and was able to make decisions in time. It sent
goals to normal agents which they followed autonomously. However, the system itself

13http://multiagentcontest.org/2010

DEPARTMENT OF INFORMATICS 24

http://multiagentcontest.org/2010

MULTI-AGENT PROGRAMMING CONTEST 2009

was distributed and its composition was based on the agent model of MicroJIAC agent
framework, which has been developed by the DAI-Labor. The team implemented a role
system, i.e., the coordination agent assigned roles (explorer, switcher, shepherd) as well
as goals to the normal agents.

The fourth team was Galoan formed by Vahid Rafe, Aghil Bayat, Mohammed Rezaei
and Yousef Purnaghi from the Computer Engineering Department, Islamic Azad Uni-
versity-Malayer Branch, Malayer, Iran[27]. Their system did not follow a multi-agent
system approach but simulated the desired behaviour of a human facing the same prob-
lem. It was implemented in the object oriented programming language Java. It featured
two components, a supervisor and a world model. Percepts were reflected in the world
model and the supervisor decided what action to choose for each agent depending on
the world model.

The fifth team was Jason-DTU formed by Jørgen Villadsen, Niklas Skamriis Boss,
Andreas Schmidt Jensen and Steen Vester from the Department of Informatics and
Mathematical Modelling, Technical University of Denmark[35]. They participated in
the contest for the first time in 2009. The Prometheus methodology was used as a
guideline for development, i.e., they adapted relevant concepts from the methodology,
while not following it too strictly. The Jason framework appeared to allow for easy
implementation of agents with events and plans. Three kinds of cowboys were devel-
oped: herders, a scout and a leader. Communication was primarily between individual
agents and the leader. A design with a single leader delegating targets leads to a less
autonomous approach. In fact, it leaded to a centralized coordination mechanism.

The sixth team was PauLo formed by Christian Loosli and Adrian Pauli from Berne
University of Applied Sciences, Switzerland. They did not use an existing multi-agent
system methodology. Instead the software was implemented in Java. Agents were
mapped to threads sending percepts to an centralized organisation that then decided
what roles and goal should be assigned to an agent. However, the agent then could act
on their own according to their role.

The seventh team was UCD Bogtrotters formed by Sean Russell, Rem Collier and
Mauro Dragone from University College Dublin, Ireland[29]. Their solution architec-
ture consisted of a custom behavioural layer for the implementation of primitive ca-
pabilities and Agent Factory (AF) as the upper layer. Together with a Teleo-Reactive
programming language AF-TR available as part of the agent Factory platform the de-
velopers implemented a strategy agent that is responsible for coordination by receiving
all perceptions, organizing agents into teams and allocating task to individual agents.
The agents’ low-level behaviours (explore, open fence, etc.) were written in Java.

The eighth and final team was USP Farmers formed by Gustavo P. Gouveia, Ricardo
H. Pereira, Jaime S. Sichman from University of Sao Paulo, Brazil[16]. The design
was based on three paradigms and abstraction levels: 1) Organisation Oriented Pro-
gramming (MOISE) to define concepts such as groups, shared plans and goals to herd,
explore, and pass fences, 2) Agent Oriented Programming (Jason) to define which plans
should be selected and performed by the agents, and 3) artifacts (CArtAgO) to exter-
nalize actions. Roles were not assigned by a coordinator, instead the agents asked for a
role and assigned roles to other agents when needed.

25 Technical Report IfI-10-14

Conclusion: Experiences and Future Outlook

6.2 Results

The Brainbug team, the winner of the Multi-Agent Programming Contest 2007,
2008 and 2009, won the tournament again. While in 2009 the gap was quite small the
Brainbug team managed to increase the gap again to 9 points.

The following overview shows how many points each team scored.

1. Brainbug (57 Points)

2. CowRaiders (48 Points)

3. UCDBogtrotters (46 Points)

4. Galoan (36 Points)

5. Argonauts (29 Points)

6. Jason-DTU (20 Points)

7. PauLo (11 Points)

8. USPFarmers (1 Point)

The Brainbug team was dominating theContestwhile CowRaiders and UCD-Bogtrotters
performed well but were not able to keep track of the first team. Then the other teams
follow with big gaps between them.

7 Conclusion: Experiences and Future Outlook

The initial idea for starting Multi-Agent Programming Contest series was to pro-
mote research in the area of multi-agent programming languages, development tools
and techniques by evaluating the state-of-the-art approaches and identify key problems
in this area. Soon we have realized that the contest should be designed very carefully in
order to enable more objective evaluation and comparison of the multi-agent program-
ming languages, development tools, techniques and platforms used by the participating
teams. During the last five editions of this contest, we have modified and extended
various components of the contest to meet these objectives. In particular, we have ex-
tended and modified the scenario, simulation software and the evaluation criteria of our
contest.

After the successful organization of the last five editions of this contest, we still can-
not give an overall account of its impact to the wider multi-agent programming research
community. Nonetheless we have noticed that various prominent research groups in this
area are enthusiastic about the contest and participated in various contest editions. Af-
ter each edition, they provided us with their experiences, feedbacks and suggestions
which we used to improve the next edition of the contest. Several participating groups
have indicated that their designed and developed programming languages, tools, and

DEPARTMENT OF INFORMATICS 26

MULTI-AGENT PROGRAMMING CONTEST 2009

platforms are getting extended and fine-tuned based on their experiences from various
editions of this contest.

Besides detecting problems and weaknesses related to their approaches, they have
reported general problems related to the development of multi-agent programs to the
multi-agent programming community. For example, our research community is now
getting aware of the need for effective debugging tools and testing approaches for multi-
agent programs.

We also recognize that our contest is challenging different research groups and mo-
tivates them to work together and integrate their approaches. This is done, for example,
by relating development methodologies to multi-agent programming languages, and by
building standards for interactions among different agent models, between agent and
environment models, between agent models and development tools, and between agent
models and their organisations.

The participating teams have been confronted with the need to respect fundamental
programming principles such as modularity and separation of concerns. The contest has
also challenged the performance and scalability of the existing platforms. Finally, the
technical infrastructure and software that are built for this contest are used for teach-
ing purposes at different universities (in particular at the universities of some of the
participating teams).

In a way, the history and the evolution of the Multi-Agent Programming Con-
test tournament series follows the maturing of the research community interested in
problems of design and implementation of programming tools and techniques for cog-
nitive BDI agents. Even though initially associated with the CLIMA workshop series,
it was mostly the members of the research community around the ProMAS workshop
series, who actively participated on the contest and contributed to its further evolution
in numerous discussions.

While a lot of effort in this community was dedicated in the past to issues related to
development of single-agent systems, gradually we witnessed a shift towards practical
problems in multi-agent system, such as cooperation, coordination, negotiation, etc.
As the recapitulation of the Contest history in Section 2 highlights, the switch to the
cows and cowboys scenario also demonstrates the gradual shift of focus of the contest
from scenarios more appropriate for benchmarking of behaviours of individual agents
to enforcing cooperation and coordination in the teams of agents. Our ambition is to
continue in this trend and we are actively discussing possibilities for adaptation and
re-design of the future simulation scenarios to involve more features such as teamwork,
coordination, cooperation, etc.

While we had the ambition to focus on benchmarking solutions to problems and
issues of multi-agent systems such as coordination, cooperation and teamwork early
on, it turned out that our belief that coordination in agent teams is beneficial even
in simple scenarios, such as the gold-mining game, was wrong. In fact, unless the
scenario enforces some kind of cooperative behaviour between agents, (1) it is much
more straightforward to come up with solutions involving uncooperative agents and (2)
the actual gains in performance of coordinating agent teams did not support the costs
and overheads induced by implementation of coordination mechanisms of autonomous

27 Technical Report IfI-10-14

Conclusion: Experiences and Future Outlook

agents beyond information sharing.

This observation makes us believe that if we want to see implemented cooperative be-
haviours, the simulation scenarios should enforce coordination techniques, rather than
simply encourage it. This feature is highlighted in the cows and cowboys scenario
which is designed so that success of individual agent-based strategies is limited and
sometimes even impossible. A single agent cannot “push” a herd of cows, they would
simply disperse in the grid, nor can an agent navigate through the environment on its
own because fences have to be actively kept opened by another agent.

As already said above, in the future, we are planning to further improve and develop
new tournament scenarios. There are two main vectors along which these developments
should proceed.

Firstly, as already mentioned above, we seek to enrich the tournament scenarios with
features enforcing and encouraging non-trivial coordination in agent teams. From our
experience we realized that scenarios enforcing coordination must involve active non-
trivial autonomous entities as a part of the simulated environment featuring complex
behaviours opaque to the agents.

Moreover, in order for coordination among the agent team members to yield a sub-
stantial benefit, the environment has to behave so that a single agent not-only can suc-
ceed, but rather individual actions should be even penalized. Only then, we will be able
to receive submissions fairly comparable w.r.t. implemented coordination mechanisms
in the agent teams. In particular, we are looking at drawing inspiration from modern
strategic computer games. Alternatively, being inspired by approaches such as ORTS,
we are also studying a possibility to introduce adversarial elements into simulation sce-
narios. For example, we aim to allow the agent teams to play against each other in a
more direct fashion. Up to now, the teams were only competing for a constant amount
of otherwise neutral resources.

Secondly, in the past we also realized that one of the factors drawing attention to the
Multi-Agent Programming Contest, in particular the attention of students in multi
agent systems courses, is the visual and playful attractiveness of the simulation scenar-
ios. We believe that this is a factor which should not be underestimated, especially when
the MASSim platform is embedded in teaching. Along this axis, we are exploring sev-
eral ideas, such as pushing the contest closer to visual attractiveness of computer games
by integration with some open game platforms. Alternatively, we are looking into pos-
sibilities on how the tournament scenarios could be closer to real-world applications by
exploiting already existing technologies in high-fidelity simulations of real-world prob-
lems, such as urban, or air-traffic simulations or physical simulations for multi-robot
systems.

Finally, what we have not seriously addressed until now is the autonomy of an agent.
As it turned out, some teams in the last contests used a kind of centralized approach:
The agents were steered by the system and the information that the single agents collect
has been distributed among all the agents through the agent platform. Thus the agents
were not truly autonomous.

DEPARTMENT OF INFORMATICS 28

MULTI-AGENT PROGRAMMING CONTEST 2009

Acknowledgements

The work of Peter Novák was partially supported by The Ministry of Education, Youth
and Sports of the Czech Republic through its Research Program MSM6840770038.

The work of Jürgen Dix and Michael Köster was funded by the NTH School for IT
Ecosystems. NTH (Niedersächsische Technische Hochschule) is a joint university con-
sisting of Technische Universität Braunschweig, Technische Universität Clausthal, and
Leibniz Universität Hannover.

References

[1] L. Astefanoaei, C.P. Mol, M.P. Sindlar, and N.A.M. Tinnemeier. Going for gold
with 2APL. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff,
editors, Proceedings of the fifth internation workshop on Programming Multi-
Agent Systems (ProMAS’07), volume 4908 of Lecture Notes in Artificial Intel-
ligence, Honululu, US, 2008. Springer.

[2] Gregor Balthasar, Jan Sudeikat, , and Wolfgang Renz. On herding artificial cows:
Using Jadex to coordinate cowboy agents. In Koen V. Hindriks, Alexander Pokahr,
and Sebastian Sardiña, editors, Proceedings of the sixth internation workshop on
Programming Multi-Agent Systems (ProMAS’08), volume 5442 of Lecture Notes
in Computer Science, Estoril, Portugal, 2009. Springer.

[3] Gregor Balthasar, Jan Sudeikat, and Wolfgang Renz. On the decentralized coordi-
nation of herding activities: A Jadex-based solution. Annals of Mathematics and
Artificial Intelligence, this volume, 2010.

[4] T.M. Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest com-
petition: 4th edition. In Koen V. Hindriks, Alexander Pokahr, and Sebastian
Sardiña, editors, Proceedings of the sixth internation workshop on Programming
Multi-Agent Systems (ProMAS’08), volume 5442 of Lecture Notes in Computer
Science, Estoril, Portugal, 2009. Springer.

[5] Fabian Bienek, Elisabeth Böhmer, Sebastian Broszeit, Daniel Hölzgen, Boguslaw
Jablkowski, Michael Kruse, Alexander Löwen, Thomas Vengels, Patrick Krüm-
pelmann, Matthias Thimm, and Gabriele Kern-Isberner. Argonauts: A working
system for motivated cooperative agents. Annals of Mathematics and Artificial
Intelligence, this volume, 2010.

[6] R.H. Bordini, J.F. Hübner, and D.M. Tralamazza. Using Jason to implement a
team of gold miners. In K. Inoue, K. Satoh, and F. Toni, editors, Computational
Logic in Multi-Agent Systems, CLIMA VII, volume 4371 of Lecture Notes in Arti-
ficial Intelligence. Springer, 2007.

29 Technical Report IfI-10-14

References

[7] Niklas Skamriis Boss, Andreas Schmidt Jensen, and Jørgen Villadsen. Building
multi-agent systems using Jason. Annals of Mathematics and Artificial Intelli-
gence, this volume, 2010.

[8] C. Cares, X. Franch, and E. Mayol. Extending Tropos for a Prolog implementa-
tion: A case study using the food collecting agent problem. In F. Toni and P. Tor-
roni, editors, International Workshop on Computational Logic in Multi-Agent Sys-
tems, CLIMA VI, volume 3400 of Lecture Notes in Artificial Intelligence. Springer,
2006.

[9] Carlos Cares, Xavier Franch, and Enric Mayol. Using antimodels to define agents
strategy. In K. Inoue, K. Satoh, and F. Toni, editors, Computational Logic in
Multi-Agent Systems, CLIMA VII, volume 4371 of Lecture Notes in Artificial In-
telligence. Springer, 2007.

[10] S. Coffey and D. Gaertner. Implementing pheromone-based, negotiating forager
agents. In F. Toni and P. Torroni, editors, International Workshop on Computa-
tional Logic in Multi-Agent Systems, CLIMA VI, volume 3400 of Lecture Notes in
Artificial Intelligence. Springer, 2006.

[11] Mehdi Dastani, Jürgen Dix, and Peter Novák. The first contest on multi-agent
systems based on computational logic. In Francesca Toni and Paolo Torroni, ed-
itors, Computational Logic in Multi-Agent Systems, 6th International Workshop,
CLIMA VI, volume 3900 of Lecture Notes in Computer Science, pages 373–384.
Springer, 2005.

[12] Mehdi Dastani, Jürgen Dix, and Peter Novák. The second contest on multi-
agent systems based on computational logic. In Katsumi Inoue, Ken Satoh, and
Francesca Toni, editors, Computational Logic in Multi-Agent Systems, 7th Inter-
national Workshop, CLIMA VII, volume 4371 of Lecture Notes on Computer Sci-
ence, pages 266–283. Springer, 2006.

[13] Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest competition - 3rd
edition. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, ed-
itors, Proceedings of the fifth internation workshop on Programming Multi-Agent
Systems (ProMAS’07), number 4908 in Lecture Notes in Artificial Intelligence,
Honululu, US, 2008. Springer.

[14] Constanze Deiters, Michael Köster, Sandra Lange, Sascha Lützel, Bassam Mok-
bel, Christopher Mumme, and Dirk Niebuhr (eds.). DemSy - a scenario for an
integrated demonstrator in a SmartCity. Technical Report 2010/01, NTH Focused
Research School for IT Ecosystems, Clausthal University of Technology, May
2010.

[15] Mauro Dragone, David Lillis, Conor Muldoon, Richard Tynan, Rem W. Collier,
and Gregory M.P. OÃHare. Dublin Bogtrotters: Agent herders. In Koen V. Hin-
driks, Alexander Pokahr, and Sebastian Sardiña, editors, Proceedings of the sixth

DEPARTMENT OF INFORMATICS 30

MULTI-AGENT PROGRAMMING CONTEST 2009

internation workshop on Programming Multi-Agent Systems (ProMAS’08), vol-
ume 5442 of Lecture Notes in Computer Science, Estoril, Portugal, 2009. Springer.

[16] Gustavo P. Gouveia, Ricardo H. Pereira, and Jaime S. Sichman. The usp farmers
herding team. Annals of Mathematics and Artificial Intelligence, this volume,
2010.

[17] Axel Hessler, Benjamin Hirsch, and Jan Keiser. JIAC IV in multi-agent pro-
gramming contest 2007. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and
M. Winikoff, editors, Proceedings of the fifth internation workshop on Program-
ming Multi-Agent Systems (ProMAS’07), volume 4908 of Lecture Notes in Artifi-
cial Intelligence, Honululu, US, 2008. Springer.

[18] Axel Hessler, Benjamin Hirsch, and Tobias Küster. Herding cows with JIAC-V.
Annals of Mathematics and Artificial Intelligence, this volume, 2010.

[19] Axel Hessler, Jan Keiser, Tobias Küster, Marcel Patzlaff, Alexander Thiele, and
Erdene-Ochir Tuguldur. Herding agents - JIAC TNG in multi-agent programming
contest 2008. In Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardiña,
editors, Proceedings of the sixth internation workshop on Programming Multi-
Agent Systems (ProMAS’08), volume 5442 of Lecture Notes in Computer Science,
Estoril, Portugal, 2009. Springer.

[20] Jomi F. Hübner and Rafael H. Bordini. Developing a team of gold miners using
Jason. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, edi-
tors, Proceedings of the fifth internation workshop on Programming Multi-Agent
Systems (ProMAS’07), volume 4908 of Lecture Notes in Artificial Intelligence,
Honululu, US, 2008. Springer.

[21] Jomi F. Hübner and Rafael H. Bordini. Using agent- and organisation-oriented
programming to develop a team of agents for a competitive game. Annals of
Mathematics and Artificial Intelligence, this volume, 2010.

[22] Jomi F. Hübner, Rafael H. Bordini, and Gauthier Picard. Using Jason and Moise+
to develop a team of cowboys. In Koen V. Hindriks, Alexander Pokahr, and Se-
bastian Sardiña, editors, Proceedings of the sixth internation workshop on Pro-
gramming Multi-Agent Systems (ProMAS’08), volume 5442 of Lecture Notes in
Computer Science, Estoril, Portugal, 2009. Springer.

[23] Howell Jordan, Jennifer Treanor, David Lillis, Mauro Dragone, Rem W. Collier,
and G.M.P. O’Hare. AF-ABLE in the Multi Agent Contest 2009. Annals of
Mathematics and Artificial Intelligence, this volume, 2010.

[24] Fabian Linges, Sönke Sieckmann, Erik StÃ̈Œrmer, Jonathan Ziller, and Axel
Hessler. Brainbug - the jiac-tu berlin team in the multi-agent programming contest
2010. Annals of Mathematics and Artificial Intelligence, this volume, 2010.

31 Technical Report IfI-10-14

References

[25] R. Logie, J. G. Hall, and K. G. Waugh. Reactive food gathering. In F. Toni
and P. Torroni, editors, International Workshop on Computational Logic in Multi-
Agent Systems, CLIMA VI, volume 3400 of Lecture Notes in Artificial Intelligence.
Springer, 2006.

[26] E. Mateus, N. Goncalves, and G. Bittencourt. Strategies for multi-agent coordina-
tion in a grid world. In F. Toni and P. Torroni, editors, International Workshop on
Computational Logic in Multi-Agent Systems, CLIMA VI, volume 3400 of Lecture
Notes in Artificial Intelligence. Springer, 2006.

[27] Vahid Rafe, Aghil Bayat, Mohammad Rezaei, and Yousef Pournaghi. Galoan: A
multi-agent approach to heard cows. Annals of Mathematics and Artificial Intelli-
gence, this volume, 2010.

[28] Adel T. Rahmani, Alireza Saberi, Mehdi Mohammadi, Amin Nikanjam,
Ehsan Adeli Mosabbeb, and Monireh Abdoos. SHABaN multi-agent team to
herd cows. In Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardiña, edi-
tors, Proceedings of the sixth internation workshop on Programming Multi-Agent
Systems (ProMAS’08), volume 5442 of Lecture Notes in Computer Science, Esto-
ril, Portugal, 2009. Springer.

[29] Sean Russell, Rem Collier, and Mauro Dragone. From bogtrotting to herding: A
ucd perspective. Annals of Mathematics and Artificial Intelligence, this volume,
2010.

[30] Stephan Schiffel and Michael Thielscher. Multi-agent FLUX for the gold min-
ing domain. In K. Inoue, K. Satoh, and F. Toni, editors, Computational Logic
in Multi-Agent Systems, CLIMA VII, volume 4371 of Lecture Notes in Artificial
Intelligence. Springer, 2007.

[31] Stephan Schiffel, Michael Thielscher, and Doan Thu Trang. An agent team based
on FLUX for the ProMAS contest 2007. In M. Dastani, A. Ricci, A. El Fal-
lah Seghrouchni, and M. Winikoff, editors, Proceedings of the fifth internation
workshop on Programming Multi-Agent Systems (ProMAS’07), volume 4908 of
Lecture Notes in Artificial Intelligence, Honululu, US, 2008. Springer.

[32] Jacek Szklarski. Ac08 system description. In Koen V. Hindriks, Alexander
Pokahr, and Sebastian Sardiña, editors, Proceedings of the sixth internation work-
shop on Programming Multi-Agent Systems (ProMAS’08), volume 5442 of Lec-
ture Notes in Computer Science, Estoril, Portugal, 2009. Springer.

[33] Erdene-Ochir Tuguldur and Marcel Patzlaff. Collecting gold. In M. Dastani,
A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff, editors, Proceedings of the
fifth internation workshop on Programming Multi-Agent Systems (ProMAS’07),
volume 4908 of Lecture Notes in Artificial Intelligence, Honululu, US, 2008.
Springer.

DEPARTMENT OF INFORMATICS 32

MULTI-AGENT PROGRAMMING CONTEST 2009

[34] Erdene-Ochir Tuguldur and Marcel Patzlaff. Moo - MicroJIAC agents operating
oxen. Annals of Mathematics and Artificial Intelligence, this volume, 2010.

[35] Jørgen Villadsen, Niklas Skamriis Boss, Andreas Schmidt Jensen, and Steen
Vester. Improving multi-agent systems using jason. Annals of Mathematics and
Artificial Intelligence, this volume, 2010.

[36] Nitin Yadav, Chenguang Zhou, Sebastian Sardina, and Ralph Ronnquist. A BDI
agent system for the cow herding domain. Annals of Mathematics and Artificial
Intelligence, this volume, 2010.

33 Technical Report IfI-10-14

XML message structure

A XML message structure

XML messages exchanged between server and agents are zero terminated UTF-8 strings.
Each XML message exchanged between the simulation server and agent consists of
three parts:

• Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"?>

• Message envelope: The root element of all XML messages is <message>. It
has attributes the timestamp and a message type identifier.

• Message separator: Note that because each message is a UTF-8 zero terminated
string, messages are separated by nullbyte.

The timestamp is a numeric string containing the status of the simulation server’s global
timer at the time of message creation. The unit of the global timer is milliseconds and it
is the result of standard system call "time" on the simulation server (measuring number
of milliseconds from January 1st, 1970 UTC). Message type identifier is one of the fol-
lowing values: auth-request, auth-response, sim-start, sim-end, bye,
request-action, action, ping, pong.

Messages sent from the server to an agent contain all attributes of the root element.
However, the timestamp attribute can be omitted in messages sent from an agent to the
server. In the case it is included, server silently ignores it.

Example of a server-2-agent message:

<message timestamp="1138900997331" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

Optional simulation specific data According to the message type, the root element
<message> can contain simulation specific data.

A.1 AUTH-REQUEST (agent-2-server)

When the agent connects to the server, it has to authenticate itself using the username
and password provided by the contest organizers in advance. This way we prevent the
unauthorized use of connection belonging to a contest participant. AUTH-REQUEST is
the very first message an agent sends to the contest server.

DEPARTMENT OF INFORMATICS 34

MULTI-AGENT PROGRAMMING CONTEST 2009

The message envelope contains one element <authentication>without subele-
ments. It has two attributes username and password.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">

<authentication username="xteam5" password="jabjar5"/>
</message>

A.2 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUEST message, the server verifies the provided credentials
and responds by a message AUTH-RESPONSE indicating success, or failure of authen-
tication. It has one attribute timestamp that represents the time when the message
was sent.

The envelope contains one <authentication> element without subelements. It
has one attribute result of type string and its value can be either "ok", or "fail".
Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979083919" type="auth-response">

<authentication result="ok"/>
</message>

A.3 SIM-START (server-2-agent)

At the beginning of each simulation the server picks two teams of agents to participate
in the simulation. The simulation starts by notifying the corresponding agents about the
details of the starting simulation. This notification is done by sending the SIM-START
message.

The data about the starting simulation are contained in one <simulation> ele-
ment with the following attributes:

• id - unique identifier of the simulation (string),

• opponent - unique identifier of the enemy team (string),

• steps - number of steps the simulation will perform (numeric),

• gsizex - horizontal size of the grid environment (west-east) (numeric),

• gsizey - vertical size of the environment (north-south) (numeric),

• corralx0 - left border of the corral (numeric),

• corralx1 - right border of the corral (numeric),

35 Technical Report IfI-10-14

XML message structure

• corraly0 - upper border of the corral (numeric),

• corraly1 - lower border of the corral (numeric). center;

Remark: One step involves all agents acting at once. Therefore if a simulation has n
steps, it means that each agent will receive REQUEST-ACTION messages exactly n
times during the simulation (unless it loses the connection to the simulation server).

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204979126544" type="sim-start">

<simulation
corralx0="0"
corralx1="14"
corraly0="55"
corraly1="69"
gsizex="70"
gsizey="70"
id="stampede"
lineOfSight="8"
opponent="xteam"
steps="10"/>

</message>

A.4 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simulation the server
notifies agents about its end and its result.

The message envelope contains one element <sim-result> with two attributes
score and result. score attribute contains number of caught in the corral of
the team the given agent belongs to, and result is a string value equal to one of
"win","lose","draw". The element <sim-result> does not contain subele-
ments.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760356" type="sim-end">

<sim-result result="draw" score="9"/>
</message>

A.5 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last simulation
has finished and subsequently terminates the connections. There is no data within the
message envelope of this message.

Example:

DEPARTMENT OF INFORMATICS 36

MULTI-AGENT PROGRAMMING CONTEST 2009

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760555" type="bye"/>

A.6 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and sends them
the corresponding perceptions.

The message envelope of the REQUEST-ACTION message contains the element
<perception> with six attributes:

• step - current simulation step (numeric),

• posx - column of current agent’s position (numeric),

• posy - row of current agent’s position (numeric),

• score - number of cows in the corral of the agent’s team at the current simula-
tion step (numeric),

• deadline - server global timer value until which the agent has to deliver a
reaction in form of an ACTION message (the same format as timestamp),

• id - unique identifier of the REQUEST-ACTION message (string).

The element <perception> contains a number of subelements <cell> with two
numeric attributes x and y that denote the cell’s relative position to the agent.

If an agent stands near the grid border, or corner, only the perceptions for the existing
cells are provided.

Each element <cell> contains a number of subelements indicating the content of
the given cell. Each subelement is an empty element tag without further subelements:

• <agent> - there is an agent in the cell. The string attribute type indicates
whether it is an agent of the enemy team, or ally. Allowed values for the attribute
type are "ally" and "enemy".

• <obstacle> - the cell contains an obstacle. This element has no associated
attributes.

• <cow> - the cell contains a cow. The string attribute ID represents the cow’s
unique identifier.

• <corral> - the cell is a corral cell. The string attribute type indicates whether
it belongs to the team’s or the opponent’s corral. Allowed values for the attribute
type are "ally" and "enemy".

• <switch> - the cell contains a switch.

• <fence> - the cell contains a segment of a fence. Allowed values for the at-
tribute open are "true" and "false".

37 Technical Report IfI-10-14

XML message structure

• <empty> - the cell is empty.

• <unknown> - the content of a cell is not provided by the server because of
information distortion.

The specific rules on allowed combinations of objects in a cell are provided in the
scenario description.

Example (compare to Fig. 6):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1243942024822" type="request-action">

<perception deadline="1243942032822" id="1" posx="16" posy="20"
score="0" step="0">

<cell x="-8" y="-8"> <empty/> </cell>
<cell x="-8" y="-7"> <empty/> </cell>
<cell x="-8" y="-6"> <empty/> </cell>
<cell x="-8" y="-5"> <obstacle/> </cell>
<cell x="-8" y="-4"> <obstacle/> </cell>
<cell x="-8" y="-3"> <obstacle/> </cell>
<cell x="-8" y="-2"> <obstacle/> </cell>
<cell x="-8" y="-1"> <obstacle/> </cell>
<cell x="-8" y="0"> <obstacle/> </cell>
<cell x="-8" y="1"> <obstacle/> </cell>
<cell x="-8" y="2"> <obstacle/> </cell>
<cell x="-8" y="3"> <obstacle/> </cell>
...
<cell x="-7" y="-4"> <corral type="ally"/> </cell>
<cell x="-7" y="-3"> <corral type="ally"/> </cell>
<cell x="-7" y="-2"> <corral type="ally"/> </cell>
<cell x="-7" y="-1"> <corral type="ally"/> </cell>
<cell x="-7" y="0"> <corral type="ally"/> </cell>
<cell x="-7" y="1"> <corral type="ally"/> </cell>
<cell x="-7" y="2"> <corral type="ally"/> </cell>
...
<cell x="-1" y="-4"> <fence open="false"/> </cell>
<cell x="-1" y="-3"> <fence open="false"/> </cell>
<cell x="-1" y="-2"> <fence open="false"/> </cell>
<cell x="-1" y="-1"> <fence open="false"/> </cell>
<cell x="-1" y="0"> <fence open="false"/> </cell>
<cell x="-1" y="1"> <fence open="false"/> </cell>
<cell x="-1" y="2"> <switch/> </cell>
...
<cell x="2" y="-3"> <cow ID="0"/> </cell>
<cell x="2" y="-2"> <empty/> </cell>
...

DEPARTMENT OF INFORMATICS 38

MULTI-AGENT PROGRAMMING CONTEST 2009

<cell x="5" y="-2"> <agent type="enemy"/> </cell>
...
<cell x="8" y="8"> <empty/> </cell>

</perception>
</message>

Note that the agent perceives an area that is a square with the size 17 with the agent
in the center (see Fig. 6). Thus each agent is able to see 289 cells. We refrained from
depicting all 289 cells in the above example and showed just some of the relevant cells
instead. The three dots indicate the missing <cell> elements.

Figure 6: The view range of the agents. The agent in the center perceives all depicted
cells.

A.7 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it chooses
to perform.

The envelope of the ACTION message contains one element <action> with the
attributes type and id. The attribute type indicates an action the agent wants to
perform. It contains a string value which can be one of the following strings:

• "skip" – (the agent does nothing),

39 Technical Report IfI-10-14

XML message structure

• "north" – (the agent moves one cell to the top) ,

• "northeast" – (the agent moves one cell to the top and one cell to the right),

• "east" – (the agent moves one cell to the right),

• "southeast" – (the agent moves one cell to the right and one cell to the bot-
tom),

• "south" – (the agent moves one cell to the bottom),

• "southwest" – (the agent moves one cell to the bottom and one to the left),

• "west" – (the agent moves one cell to the left),

• "northwest" – (the agent moves one cell to the left and one to the top).

The attribute id is a string which should contain the REQUEST-ACTION message
identifier. The agents must plainly copy the value of id attribute in REQUEST-ACTION
message to the id attribute of ACTION message, otherwise the action message will be
discarded.

Note that the corresponding ACTION message has to be delivered to the time indi-
cated by the value of attribute deadline of the REQUEST-ACTIONmessage. Agents
should therefore send the ACTION message in advance before the indicated deadline is
reached so that the server will receive it in time.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action id="70" type="skip"/>
</message>

A.8 Ill-formed messages

Not well-formed XML messages received by the server from agents are discarded. This
means, that if some obligatory information (element, or attribute) of a given message
is missing the server silently ignores it. In the case that a message will contain addi-
tional not-required informations, only the first occurence is processed by the server. We
strongly recommend to comply with the communicatison protocol described above.

Examples:

<?xml version="1.0" encoding="UTF-8"?>
<message type="auth-request">

<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent32" password="11111WWw"/>

<some-element arbitrary="234TreE"/>
</message>

DEPARTMENT OF INFORMATICS 40

MULTI-AGENT PROGRAMMING CONTEST 2009

<message type="action">
<authentication username="team1agent1" password="qwErTY"/>
<authentication username="team1agent1" password="qwErTY"/>
<some-element arbitrary="234TreE"/>

</message>

The message above will be processed as an AUTH-REQUEST message with the cre-
dentials team1agent1/qwErTY.

41 Technical Report IfI-10-14

	Introduction
	Motivation
	Paper Outline
	History of The Contest
	Survey of Related Competitions
	The MASSim Platform
	The Multi-Agent Programming Contest 2009: Cows and Cowboys
	General Description
	Cooperative Cows Herding
	Agent Perceptions and Actions
	Cow Movement Algorithm
	Comparison to Multi-Agent Programming Contest 2008
	Communication Protocol
	General Agent-2-Server Communication Principles
	Communication Protocol Overview
	Reconnection

	Participants and Approaches
	Results

	The Multi-Agent Programming Contest 2010: Cows and Cowboys
	Participants and Approaches
	Results

	Conclusion: Experiences and Future Outlook
	XML message structure
	AUTH-REQUEST (agent-2-server)
	AUTH-RESPONSE (server-2-agent)
	SIM-START (server-2-agent)
	SIM-END (server-2-agent)
	BYE (server-2-agent)
	REQUEST-ACTION (server-2-agent)
	ACTION (agent-2-server)
	Ill-formed messages

