
The Multi-Agent Programming
Contest 2012 Edition
Evaluation and Team Descriptions

Michael Köster, Federico Schlesinger, Jürgen Dix

IfI Technical Report Series IfI-13-01

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix

Technical editor: Federico Schlesinger

Contact: federico.schlesinger@tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)

Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)

Prof. Dr. Sven Hartmann (Databases and Information Systems)

Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)

apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)

Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)

Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)

Prof. Dr. Jörg Müller (Business Information Technology)

Prof. Dr. Niels Pinkwart (Business Information Technology)

Prof. Dr. Andreas Rausch (Software Systems Engineering)

apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)

Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)

Prof. Dr. Christian Siemers (Embedded Systems)

PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)

Dr. Michaela Huhn (Theoretical Foundations of Computer Science)

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Contents

I Overview 12

1 Introduction 13
1.1 RelatedWork . 14
1.2 The contest from 2005–2012 . 14

2 MAPC 2012: Agents onMars 15
2.1 The Scenario . 15
2.2 Changes andModifications to the Scenario from 2011 19

3 The Tournament 19
3.1 Participants and Results . 19
3.2 Overview of the Teams’ Strategies 21

4 Interesting Simulations 23
4.1 SMADAS-UFSC vs. Python-DTU – Simulation 1 24

4.1.1 Achievements and Buying Strategy 24
4.1.2 Zone Stability . 26
4.1.3 Actions per Role . 26

4.2 SMADAS-UFSC vs. Python-DTU – Simulation 2 28
4.2.1 Zone Scores and Stability 29
4.2.2 Achievements and buying strategy 30
4.2.3 Actions per Role . 30

4.3 PGIM vs. AiWYX – Simulation 1 32
4.3.1 Scores . 33
4.3.2 Zone Stability . 33
4.3.3 Achievements . 33
4.3.4 Actions per Role . 34

4.4 TUB vs. LTI-USP – Simulation 1 35
4.4.1 Scores . 37
4.4.2 Zone Stability . 37
4.4.3 Achievements . 37
4.4.4 Actions per Role . 38

4.5 Streett vs. TUB – Simulation 2 40
4.5.1 Scores . 41
4.5.2 Zone Stability . 42
4.5.3 Achievements . 42
4.5.4 Actions per Role . 43

5 Summary, Conclusion and Future of the Contest 45

1 Technical Report IfI-13-01

Contents

II TeamDescriptions 49

6 SMADAS-UFSC 50

7 Python-DTU 66

8 TUB 85

9 LTI-USP 98

10 AiWYX 115

11 PGIM 132

12 Streett 132

III All Results in Great Detail 133

13 AiWYX vs. PGIM – Simulation 1 134

13.1 Scores, Zone Stability and Achievements 134

13.2 Stability . 136

13.3 Achievements . 137

13.4 Actions per Role . 138

14 AiWYX vs. PGIM – Simulation 2 140

14.1 Scores, Zone Stability and Achievements 140

14.2 Stability . 142

14.3 Achievements . 143

14.4 Actions per Role . 144

15 AiWYX vs. PGIM – Simulation 3 146

15.1 Scores, Zone Stability and Achievements 146

15.2 Stability . 148

15.3 Achievements . 149

15.4 Actions per Role . 150

16 AiWYX vs. Python-DTU – Simulation 1 152

16.1 Scores, Zone Stability and Achievements 152

16.2 Stability . 154

16.3 Achievements . 155

16.4 Actions per Role . 156

DEPARTMENTOF INFORMATICS 2

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

17 AiWYX vs. Python-DTU – Simulation 2 159

17.1 Scores, Zone Stability and Achievements 159

17.2 Stability . 161

17.3 Achievements . 162

17.4 Actions per Role . 163

18 AiWYX vs. Python-DTU – Simulation 3 166

18.1 Scores, Zone Stability and Achievements 166

18.2 Stability . 168

18.3 Achievements . 169

18.4 Actions per Role . 170

19 AiWYX vs. Streett – Simulation 1 173

19.1 Scores, Zone Stability and Achievements 173

19.2 Stability . 175

19.3 Achievements . 176

19.4 Actions per Role . 177

20 AiWYX vs. Streett – Simulation 2 179

20.1 Scores, Zone Stability and Achievements 179

20.2 Stability . 181

20.3 Achievements . 182

20.4 Actions per Role . 183

21 AiWYX vs. Streett – Simulation 3 185

21.1 Scores, Zone Stability and Achievements 185

21.2 Stability . 187

21.3 Achievements . 188

21.4 Actions per Role . 189

22 AiWYX vs. TUB – Simulation 1 191

22.1 Scores, Zone Stability and Achievements 191

22.2 Stability . 193

22.3 Achievements . 194

22.4 Actions per Role . 195

23 AiWYX vs. TUB – Simulation 2 197

23.1 Scores, Zone Stability and Achievements 197

23.2 Stability . 199

23.3 Achievements . 200

23.4 Actions per Role . 201

3 Technical Report IfI-13-01

Contents

24 AiWYX vs. TUB – Simulation 3 203

24.1 Scores, Zone Stability and Achievements 203

24.2 Stability . 205

24.3 Achievements . 206

24.4 Actions per Role . 207

25 AiWYX vs. UFSC – Simulation 1 209

25.1 Scores, Zone Stability and Achievements 209

25.2 Stability . 211

25.3 Achievements . 212

25.4 Actions per Role . 213

26 AiWYX vs. UFSC – Simulation 2 215

26.1 Scores, Zone Stability and Achievements 215

26.2 Stability . 217

26.3 Achievements . 218

26.4 Actions per Role . 219

27 AiWYX vs. UFSC – Simulation 3 221

27.1 Scores, Zone Stability and Achievements 221

27.2 Stability . 223

27.3 Achievements . 224

27.4 Actions per Role . 225

28 AiWYX vs. USP – Simulation 1 227

28.1 Scores, Zone Stability and Achievements 227

28.2 Stability . 229

28.3 Achievements . 230

28.4 Actions per Role . 231

29 AiWYX vs. USP – Simulation 2 233

29.1 Scores, Zone Stability and Achievements 233

29.2 Stability . 235

29.3 Achievements . 236

29.4 Actions per Role . 237

30 AiWYX vs. USP – Simulation 3 239

30.1 Scores, Zone Stability and Achievements 239

30.2 Stability . 241

30.3 Achievements . 242

30.4 Actions per Role . 243

DEPARTMENTOF INFORMATICS 4

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

31 PGIM vs. Python-DTU – Simulation 1 245

31.1 Scores, Zone Stability and Achievements 245

31.2 Stability . 247

31.3 Achievements . 248

31.4 Actions per Role . 249

32 PGIM vs. Python-DTU – Simulation 2 252

32.1 Scores, Zone Stability and Achievements 252

32.2 Stability . 254

32.3 Achievements . 255

32.4 Actions per Role . 256

33 PGIM vs. Python-DTU – Simulation 3 259

33.1 Scores, Zone Stability and Achievements 259

33.2 Stability . 261

33.3 Achievements . 262

33.4 Actions per Role . 263

34 PGIM vs. Streett – Simulation 1 266

34.1 Scores, Zone Stability and Achievements 266

34.2 Stability . 268

34.3 Achievements . 269

34.4 Actions per Role . 270

35 PGIM vs. Streett – Simulation 2 272

35.1 Scores, Zone Stability and Achievements 272

35.2 Stability . 274

35.3 Achievements . 275

35.4 Actions per Role . 276

36 PGIM vs. Streett – Simulation 3 278

36.1 Scores, Zone Stability and Achievements 278

36.2 Stability . 280

36.3 Achievements . 281

36.4 Actions per Role . 282

37 PGIM vs. TUB – Simulation 1 284

37.1 Scores, Zone Stability and Achievements 284

37.2 Stability . 286

37.3 Achievements . 287

37.4 Actions per Role . 288

5 Technical Report IfI-13-01

Contents

38 PGIM vs. TUB – Simulation 2 290

38.1 Scores, Zone Stability and Achievements 290

38.2 Stability . 292

38.3 Achievements . 293

38.4 Actions per Role . 294

39 PGIM vs. TUB – Simulation 3 296

39.1 Scores, Zone Stability and Achievements 296

39.2 Stability . 298

39.3 Achievements . 299

39.4 Actions per Role . 300

40 PGIM vs. UFSC – Simulation 1 302

40.1 Scores, Zone Stability and Achievements 302

40.2 Stability . 304

40.3 Achievements . 305

40.4 Actions per Role . 306

41 PGIM vs. UFSC – Simulation 2 308

41.1 Scores, Zone Stability and Achievements 308

41.2 Stability . 310

41.3 Achievements . 311

41.4 Actions per Role . 312

42 PGIM vs. UFSC – Simulation 3 314

42.1 Scores, Zone Stability and Achievements 314

42.2 Stability . 316

42.3 Achievements . 317

42.4 Actions per Role . 318

43 PGIM vs. USP – Simulation 1 320

43.1 Scores, Zone Stability and Achievements 320

43.2 Stability . 322

43.3 Achievements . 323

43.4 Actions per Role . 324

44 PGIM vs. USP – Simulation 2 326

44.1 Scores, Zone Stability and Achievements 326

44.2 Stability . 328

44.3 Achievements . 329

44.4 Actions per Role . 330

DEPARTMENTOF INFORMATICS 6

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

45 PGIM vs. USP – Simulation 3 332

45.1 Scores, Zone Stability and Achievements 332

45.2 Stability . 334

45.3 Achievements . 335

45.4 Actions per Role . 336

46 Python-DTU vs. UFSC – Simulation 1 338

46.1 Scores, Zone Stability and Achievements 338

46.2 Stability . 340

46.3 Achievements . 341

46.4 Actions per Role . 342

47 Python-DTU vs. UFSC – Simulation 2 345

47.1 Scores, Zone Stability and Achievements 345

47.2 Stability . 347

47.3 Achievements . 348

47.4 Actions per Role . 349

48 Python-DTU vs. UFSC – Simulation 3 352

48.1 Scores, Zone Stability and Achievements 352

48.2 Stability . 354

48.3 Achievements . 355

48.4 Actions per Role . 356

49 Streett vs. Python-DTU – Simulation 1 359

49.1 Scores, Zone Stability and Achievements 359

49.2 Stability . 361

49.3 Achievements . 362

49.4 Actions per Role . 363

50 Streett vs. Python-DTU – Simulation 2 366

50.1 Scores, Zone Stability and Achievements 366

50.2 Stability . 368

50.3 Achievements . 369

50.4 Actions per Role . 370

51 Streett vs. Python-DTU – Simulation 3 373

51.1 Scores, Zone Stability and Achievements 373

51.2 Stability . 375

51.3 Achievements . 376

51.4 Actions per Role . 377

7 Technical Report IfI-13-01

Contents

52 Streett vs. TUB – Simulation 1 380

52.1 Scores, Zone Stability and Achievements 380

52.2 Stability . 382

52.3 Achievements . 383

52.4 Actions per Role . 384

53 Streett vs. TUB – Simulation 2 386

53.1 Scores, Zone Stability and Achievements 386

53.2 Stability . 388

53.3 Achievements . 389

53.4 Actions per Role . 390

54 Streett vs. TUB – Simulation 3 392

54.1 Scores, Zone Stability and Achievements 392

54.2 Stability . 394

54.3 Achievements . 395

54.4 Actions per Role . 396

55 Streett vs. UFSC – Simulation 1 398

55.1 Scores, Zone Stability and Achievements 398

55.2 Stability . 400

55.3 Achievements . 401

55.4 Actions per Role . 402

56 Streett vs. UFSC – Simulation 2 404

56.1 Scores, Zone Stability and Achievements 404

56.2 Stability . 406

56.3 Achievements . 407

56.4 Actions per Role . 408

57 Streett vs. UFSC – Simulation 3 410

57.1 Scores, Zone Stability and Achievements 410

57.2 Stability . 412

57.3 Achievements . 413

57.4 Actions per Role . 414

58 Streett vs. USP – Simulation 1 416

58.1 Scores, Zone Stability and Achievements 416

58.2 Stability . 418

58.3 Achievements . 419

58.4 Actions per Role . 420

DEPARTMENTOF INFORMATICS 8

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

59 Streett vs. USP – Simulation 2 422

59.1 Scores, Zone Stability and Achievements 422

59.2 Stability . 424

59.3 Achievements . 425

59.4 Actions per Role . 426

60 Streett vs. USP – Simulation 3 428

60.1 Scores, Zone Stability and Achievements 428

60.2 Stability . 430

60.3 Achievements . 431

60.4 Actions per Role . 432

61 TUB vs. Python-DTU – Simulation 1 434

61.1 Scores, Zone Stability and Achievements 434

61.2 Stability . 436

61.3 Achievements . 437

61.4 Actions per Role . 438

62 TUB vs. Python-DTU – Simulation 2 441

62.1 Scores, Zone Stability and Achievements 441

62.2 Stability . 443

62.3 Achievements . 444

62.4 Actions per Role . 445

63 TUB vs. Python-DTU – Simulation 3 448

63.1 Scores, Zone Stability and Achievements 448

63.2 Stability . 450

63.3 Achievements . 451

63.4 Actions per Role . 452

64 TUB vs. UFSC – Simulation 1 455

64.1 Scores, Zone Stability and Achievements 455

64.2 Stability . 457

64.3 Achievements . 458

64.4 Actions per Role . 459

65 TUB vs. UFSC – Simulation 2 461

65.1 Scores, Zone Stability and Achievements 461

65.2 Stability . 463

65.3 Achievements . 464

65.4 Actions per Role . 465

9 Technical Report IfI-13-01

Contents

66 TUB vs. UFSC – Simulation 3 467

66.1 Scores, Zone Stability and Achievements 467

66.2 Stability . 469

66.3 Achievements . 470

66.4 Actions per Role . 471

67 TUB vs. USP – Simulation 1 473

67.1 Scores, Zone Stability and Achievements 473

67.2 Stability . 475

67.3 Achievements . 476

67.4 Actions per Role . 477

68 TUB vs. USP – Simulation 2 479

68.1 Scores, Zone Stability and Achievements 479

68.2 Stability . 481

68.3 Achievements . 482

68.4 Actions per Role . 483

69 TUB vs. USP – Simulation 3 485

69.1 Scores, Zone Stability and Achievements 485

69.2 Stability . 487

69.3 Achievements . 488

69.4 Actions per Role . 489

70 USP vs. Python-DTU – Simulation 1 491

70.1 Scores, Zone Stability and Achievements 491

70.2 Stability . 493

70.3 Achievements . 494

70.4 Actions per Role . 495

71 USP vs. Python-DTU – Simulation 2 498

71.1 Scores, Zone Stability and Achievements 498

71.2 Stability . 500

71.3 Achievements . 501

71.4 Actions per Role . 502

72 USP vs. Python-DTU – Simulation 3 505

72.1 Scores, Zone Stability and Achievements 505

72.2 Stability . 507

72.3 Achievements . 508

72.4 Actions per Role . 509

DEPARTMENTOF INFORMATICS 10

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

73 USP vs. UFSC – Simulation 1 512
73.1 Scores, Zone Stability and Achievements 512
73.2 Stability . 514
73.3 Achievements . 515
73.4 Actions per Role . 516

74 USP vs. UFSC – Simulation 2 518
74.1 Scores, Zone Stability and Achievements 518
74.2 Stability . 520
74.3 Achievements . 521
74.4 Actions per Role . 522

75 USP vs. UFSC – Simulation 3 524
75.1 Scores, Zone Stability and Achievements 524
75.2 Stability . 526
75.3 Achievements . 527
75.4 Actions per Role . 528

11 Technical Report IfI-13-01

Contents

Part I

Overview

DEPARTMENTOF INFORMATICS 12

TheMulti-Agent Programming Contest 2012 Edition

Evaluation and TeamDescriptions

Michael Köster, Federico Schlesinger, Jürgen Dix

Department of Informatics, Clausthal University of Technology,

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

Abstract

TheMulti-Agent ProgrammingContest,MAPC, is an annual, community-
serving competition that attracts groups from all over the world. Its aim
is to facilitate advances in programming multiagent systems (MAS) by
(1) developing benchmark problems, (2) enabling head-to-head compar-
ison of MAS’s and (3) supporting educational efforts in the design and
implementation of MAS’s. We report about its eighth edition and give a
detailed overview of the participants strategies and the overall contest.

1 Introduction

This paper serves as an introduction to the subsequent papers in this pro-
ceedings volume, each of which describes a team that participated in this
years edition. We give a comprehensive overview of the Multi-Agent Pro-
gramming Contest1 2012, an annual international event that has started in
2005 as an attempt to stimulate research in the field of programming multi-
agent system by 1) identifying key problems, 2) collecting suitable bench-
marks, and 3) gathering test cases which require and enforce coordinated
action that can serve asmilestones for testingmulti-agent programming lan-
guages, platforms and tools. In 2012 the competitionwas organised andheld
for the eighth time.

Research communities in general benefit from competitions that attempt
to evaluate different aspects of the systems under consideration and further-
more allow for comparing state of the art systems, act as a driver and catalyst
for developments and pose challenging research problems.

In this paper we (1) briefly introduce theContest and its infrastructure, (2)
elaborate on the 2012 scenario and its differences with the 2011 edition, (3)

1http://multiagentcontest.org

13

http://multiagentcontest.org

MAPC 2012: Agents onMars

introduce the seven teams that took part in the tournament, and (4) present
results and findings acquired before, during and after the tournament.

More detailed information about the strategies of the teams are to be found
in the remaining six papers in this volume.

1.1 RelatedWork

TheMulti-Agent Programming Contesthas generatedquite a fewpublications
over the years [9, 10, 11, 3, 4, 1, 8]. For a detailed account on thehistory of the
contest as well as the underlying simulation platform, we refer to [1, 8, 5, 6].
A quick non-technical overview appears in [2].

Similar contests, competitions and challenges have taken place in the past
few years. Among them we mention Google’s AI challenge2, the AI-MASWin-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5, the
ORTS competition6, and the Planning Competition7. Every such competition
rests in its own research niche. Originally, our Contest has been designed for
problem solving approaches that are based on formal approaches and com-
putational logics. But this is not a requirement to enter the competition.

1.2 The contest from 2005–2012

From 2005 to 2007 we used a classical gold miners scenario [10] and intro-
duced the MASSim platform: A platform for executing the Contest tourna-
ments.

From 2008 to 2010 we developed the cows and cowboys scenario which
has been designed to enforce cooperative behavior among agents [4]. The
topology of the environment was represented by a grid that contained, be-
sides various obstacles, a population of simulated cows. The goal was to ar-
range agents in a manner that scared cows into special areas, called corrals,
in order to get points. While still maintaining the core tasks of environment
exploration and path planning, we also made the use of cooperative strate-
gies an obligation.

The agents on Mars scenario, used during the 2012 edition and discussed
in this paper, was firstly introduced in 2011 [5]. In short, we have general-
ized the environment topology to a weighted graph. Agents were expected
to cooperatively establish a graph covering while standing their ground in
an adversarial setting and reaching achievements.

2http://aichallenge.org/
3http://www.aiolympics.ro/
4http://eis.ucsc.edu/StarCraftAICompetition
5http://www.marioai.org/
6http://skatgame.net/mburo/orts/
7http://ipc.icaps-conference.org/

DEPARTMENTOF INFORMATICS 14

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

2 MAPC 2012: Agents onMars

In this section we give a detailed overview of the 2012 agents on Mars sce-
nario and point out differences to the scenario from 2011.

2.1 The Scenario

It is now a tradition to accompany the technical description of each scenario
with amotivating little story:

In the year 2033 mankind finally populates Mars. While in the begin-
ning the settlers received food and water from transport ships sent from
earth shortly afterwards – because of the outer space pirates – send-
ing these ships became too dangerous and expensive. Also, there were
rumors going around that somebody actually found water on Mars be-
low the surface. Soon the settlers started to develop autonomous intelli-
gent agents, so-called All Terrain Planetary Vehicles (ATPV), to search
for water wells. The World Emperor – enervated by the pirates – de-
cided to strengthen the search for water wells by paying money for cer-
tain achievements. Sadly, this resulted in sabotage among the different
groups of settlers.

Now, the task of your agents is to find the best water wells and occupy
the best zones of Mars. Sometimes they have to sabotage their rivals to
achieve their goal (while the opponents will most probably do the same)
or to defend themselves. Of course the agents’ vehicle pool contains spe-
cific vehicles. Some of them have special sensors, some are faster and
some have sabotage devices on board.

Last but not least, your team also contains special experts, e.g. the
repairer agents, that are capable of fixing agents that are disabled. In
general, each agent has special expert knowledge and is thus the only
one being able to perform a certain action. So your agents have to find
ways to cooperate and coordinate among them.

The environment’s topology is constituted by a weighted graph. Each ver-
tex has a unique identifier and a number that indicates its value. Each edge
has a number that represents the costs of moving from one of its vertices to
the other. These vertex-values are crucial for calculating the values of zones.
A zone is a subgraph that is covered by a team of agents according to a color-
ing algorithm that is based on a domination principle.
Several agents can stand on a single vertex. If a set of agents dominates

such a vertex, the vertex gets the color of the dominating team. A previously
uncolored vertex that has a majority of neighbors (at least 2) with a specific
color, inherits this color as well. Finally, if the overall graph contains a col-
ored subgraph that constitutes a frontier or border, all the nodes that are in-

15 Technical Report IfI-13-01

MAPC 2012: Agents onMars

side this border are colored as well. Thismeans that agents can color or cover
a subgraph that has more vertices than the overall number of agents. Fig-
ure 1 shows a screenshot of a relatively small map, depicting, amongst other
things, the graph coloring.

Figure 1: A screenshot of the agents onMars scenario.

Before elaborating on the agent roles we have to specify the effectoric ca-
pabilities of the agents. Each agent, or vehicle, has a state that is defined by
its positionon themap, its current energy available for executing actions and
its current health. On top of that, each team has a budget for equipping the
vehicles during the simulation. These actions8 are defined by the scenario:

• skip is the noop-action, which does not change the state of the envi-
ronment,

• recharge increases the current energy of a vehicle by a fixed factor and
can be performed at any time without costs,

8Of course, all the actions that cost energy will fail if the vehicle under consideration does
not have enough energy.

DEPARTMENTOF INFORMATICS 16

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

• attackdecreases thehealth of anopponent, standingon the samever-
tex, if successfully executed and decreases the current energy of the at-
tacker,

• parryparries an attack anddecreases the energy of the defending agent,

• goto moves the vehicle to a neighboring vertex while decreasing its
energy by the weight of the traversed edge,

• probe yields the exact value of the vertex the vehicle is standing on
and decreases the probing vehicle’s energy,

• survey yields the exact weights of visible edges while decreasing the
energy,

• inspect costs energy and yields the internals of all visible opponents,

• buy equips the vehicle with new components, which increase its per-
formance, and cost money, and

• repair repairs a teammate, which again costs energy.

We have defined five different roles. Each team consists of four vehicles
for each role, that is a total of twenty vehicles per team. This number in-
creased from the 2011 edition, where teams were composed by 2 vehicles for
each role, totaling 10 vehicles. Each role defines the vehicle’s internals and
its capabilities. The roles differ with respect to energy, health, strength and
visibility range. The effectoric capabilities are as follows:

• explorer can skip,move to a vertex, probe a vertex, survey visible edges,
buy equipment and recharge its energy,

• repairer can skip,move to a vertex, parry an attack, survey visible edges,
buy equipment, repair a teammate and recharge its energy,

• saboteur can skip, move to a vertex, parry an attack, survey visible
edges, buy equipment, attack an opponent and recharge its energy,

• sentinel can skip,move to a vertex, parry an attack, survey visible edges,
buy equipment and recharge its energy,

• inspector can skip, move to a vertex, inspect visible opponents, survey
visible edges, buy equipment and recharge its energy.

Achievements are tasks that, if fulfilled, contribute to the teams’ budgets.
We have defined a set of achievements that includes having zones with fixed
values, inspecting a specific number of vehicles, probing a number of ver-
tices, surveying a fixed number of edges and successfully performing and
parrying a number of attacks.
In each step, each vehicle is provided with its currently available percepts:

17 Technical Report IfI-13-01

MAPC 2012: Agents onMars

• the state of the simulation, i.e. the current step,

• the state of the team, i.e. the current scores andmoney,

• the state of itself, i.e. its internals,

• all visible vertices, i.e. identifier and team,

• all visible edges, i.e. their vertices’ identifiers,

• all visible vehicles, i.e. their identifier, vertices and team,

• probed vertices, i.e. their identifier and values,

• surveyed edges, i.e. their vertices’ identifiers and weights, and

• inspected vehicles, i.e. their identifiers, vertices, teams and internals.

After sending percepts, the server grants some time for deliberation. After
that the new state is computed. The simulation state transition is as follows:

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.

The introduction of the agents on Mars scenario was also accompanied
by the release of an environment interface that has been developed to be
compatible with the environment interface standard [7]. This standard allows
Java based problem solving approaches to make use of a jar-file provided by
the organizers that facilitated connecting to and communicating with the
MASSim server. This is donemymapping thewhole communication to Java-
method invocations and callbacks.

DEPARTMENTOF INFORMATICS 18

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

2.2 Changes andModifications to the Scenario from 2011

As alreadymentioned,we increased thenumber of agents to 20 andprovided
them with more energy. This results in less recharging and gives themmore
freedom: in 2011, recharge was by far the most used action.
The visualizationwas improved a lot (zones as well as high-valued vertices

are highlighted, costs of the edges are depicted by their thickness. The last
action from an agent at each vertex is illustrated: (1) green circle: success-
ful sense action (probe, survey, inspect), (2) red circle: last action failed, (3)
yellow star: successful attack, (4) indigo star: successful parry, (5) pink star:
successful repair, and (6) crossed out: disabled.
Agents are now getting feedback as towhy their actions failed (if they did).

The (automatic) generation ofmaps has been improved (amap contains now
several centers).

3 The Tournament

During past editions of the Contest, stability (i.e., the capacity to send ac-
tions to the MASSim server in time) was a big problem for some teams. It
also affected the overall quality of the Contest and the possibility to draw
conclusions about the strategies by looking at the results. To address this,
we decided for the 2012 edition to implement a qualification round, in which
teams were required to show that they were able to maintain good stability
(i.e. timeout-rates below 5%) during a round of testmatches. Only then they
were allowed to take part in the tournament.

3.1 Participants and Results

Nine teams from all around the world registered for the Contest. Seven of
them were able to pass the qualification round and took part in the tourna-
ment (see Table 1). Full introductions of the teams can be found in [12] and
in the papers included in this volume.
Team AiWYX was a single-developer team from Sun Yat-Sen Univerity,

China. The agents were developed in C++, using no agent-specific technolo-
gies. The approach used is centralized, where one agent gets all the percepts
from the other agents andmakes the decisions for the whole team.
Team PGIM comes from the Islamic Azad University of Malayer, Iran. The

3developers used agent-specific technologies for developing their team: Prometheus,
JACK.Nevertheless the teamorganization is not distributed, and agents broad-
cast their percepts.
Team LTI-USP from University of Sao Paulo, Brazil had three developers.

Agents were implemented using Jason, CArtAgO and Moise. There is one
agent that determines the best strategy, but each agent has its own thread,

19 Technical Report IfI-13-01

The Tournament

Team Affiliation Platform/Language

AiWYX Sun Yat-Sen University, China C++
PGIM Islamic Azad University of Malayer, Iran Prometheus, JACK
LTI-USP University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC Federal University of Santa Catarina, Brazil Jason
Python-DTU Technical University of Denmark Python
Streett - , USA Java
TUB TU Berlin, Germany JIAC

Table 1: Participants of the 2012 edition.

with its own beliefs, desires and intentions. Agents broadcast new percepts,
but communication load decreases over time.

Team SMADAS-UFSC is from Federal University of Santa Catarina, Brazil.
It had six team members. The language of choice for agent development
was Jason. Besides normal agent-communication provided by Jason, agents
shared a common data-structure (blackboard) for storing the graph topol-
ogy.

Team Python-DTU from the Technical University of Denmark is a regu-
lar contender of the Multi-Agent Programming Contest. For this edition it
registered 6 members. As team’s name suggest, Python was the language of
choice. The agents follow a decentralized approach, where coordination is
achieved through distributed algorithms, e.g. for auction-based agreement.

Team Streett was composed by a single independent developer from the
USA. Agents were developed in Java, based on the sample agents provided
with theMASSim platform. Agents shared only vital information and coor-
dination was achieved by sharing location data.

Team TUB, TU Berlin, Germany, is another regular contender of theMulti-
Agent Programming Contest, that presented for this edition as a single-developer
team. The agents are developed in the JIAC platform (whichwon the contest
several times in previous years).

The tournament took place from 10th to 12th September 2012. Each day
each team played against two other teams so that in the end all teams played
against all others. We started the tournament each morning at 10 am and
finished at around 3 pm. Amatch between two teams consisted of 3 simula-
tions only differing in the size of the graph. For a win the team got 3 points
and for a draw 1 point. The results of this year’sContest are shown in Table 2.

Two teams, SMADAS-UFSC and Python-DTU, stood out from the rest and
the tournament winner was decided by the match that confronted them,
during the second day of the competition. SMADAS-UFSC won two of three
simulations of that match and was crowned champion, leaving Python-DTU
as runner-up for the second consecutive year. Both teamswonall thematches
they played against the rest of the teamswithout losing any simulations. The

DEPARTMENTOF INFORMATICS 20

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Pos. Team Score Difference Points

1 SMADAS-UFSC 2778057 : 1043023 1735034 51
2 Python-DTU 2738397 : 1095251 1643146 48
3 TUB 2090849 : 1600914 489935 30
4 LTI-USP 1627177 : 1845601 -218424 27
5 AiWYX 2301358 : 1526768 774590 24
6 PGIM 1130432 : 2047735 -917303 9
7 Streett 192694 : 3699672 -3506978 0

Table 2: Results.

mid-table teams TUB, LTI-USP and AiWYXwhere relatively close while play-
ing against each other. They could not catch up with the first two teams but
clearly differentiated from the last two.
Thanks to the qualification round (as well as the optional test matches

offered before it), there were no stability issues during the Contest. This was
a great improvement compared to previous editions. Although some of the
teams experimented a few crashes from time to time, the promptness of the
developers to restart their agents ensured that the results of the simulation
were not affected by these isolated events.

3.2 Overview of the Teams’ Strategies

In this section we collect a few facts about the participating teams. For more
detailed information we refer to the articles in these proceedings.

SMADAS: The winner of this years contest, from Brazil, used Jason, a dedi-
catedMASprogramming language. For some algorithms, Javawas used
to implement them, rather than Jason. The development needed 500
personhours distributed among6people. Theyused7900 lines of code,
2400 of which were written in Java. Communication with the server
was done through the EISMASSIM interface.

The system is decentralized. Agents were executed on the same ma-
chine to use sharedmemory (blackboard programming). But updating
the blackboard was computationally difficult and thus could only be
done every 3 steps.

The strategy was first to explore the map, find the best potential zones
(high values) and then to conquer and defend them. An interesting
idea was to make the opponents spend their money using a special
agent: Hulk. If the team detects that there is no particular buying strat-
egy, then the Hulk agent changes its behaviour.

They claim that the goodperformance is basedon the various strategies
that make the team very flexible against different opponents. Defend-
ing of the zones can still be improved.

21 Technical Report IfI-13-01

The Tournament

Python-DTU: The danish team ended as runner-up for the second time in
a row. The team did not use a dedicated platform or MAS program-
ming language. They choose Python for efficiency and to have com-
plete control over all features in the implementation. However, the
team used the organizational model ofMoise.

The solution they implemented is decentralized and heavily based on
communications between the agents and on an auction-based agree-
ment algorithm. They invested 300 person hours distributed among 6
people. 1500 lines of codes were written.

The strategy is based on dividing the game in three phases: randomly
trying for achievements in the first phase, taking control of high val-
ued areas and sending out explorers in the second phase, and trying to
expand in the third phase.

The team claims that their buying algorithm has been detected in the
qualification phase and a clever counter strategy was developed by an-
other team that eventually led to the defeat.

TUB: The german team TUB, winner of several contests in the past, entered
the contest for the 4th time (but with different team members). They
use a centralized approachwhere agents share all their perceptions and
intentions. It required 640 person hours (and 8000 lines of code)

First the agents probe and survey the whole graph. Explorers, attack-
ers, repairers and inspectors only contribute to the zoning algorithm,
if they have done their dedicated tasks. The team tries to find a balance
between zoning and achievements points.

The teamclaims that they didnot foresee very aggressive playingmeth-
ods and that this led to several lost games.

LTI-USP: The motivation of the second brazilian team, (one professor and
2 students without previous experience in this scenario, was to test
the JaCaMo framework (CArtAgO, Jason and Moise). They used a cen-
tralized approach for coordinating the agents and communication via
speech-acts. 300 person-hours were invested and 3000 lines of code (a
third in AgentSpeak, the rest in Java) were written.

The strategy was not to divide the game into phases but the agents into
three subgroups: two for occupying zones and one for sabotaging the
enemy. Communication with the server was through the EISMASSIM
interface. The repairer agents stay where they are and wait until dam-
aged agents come and see them. The sentinels always parry when an
opponent saboteur is there and the own saboteurs always attack oppo-
nents in the same vertex.

DEPARTMENTOF INFORMATICS 22

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

No defense strategy has been implemented and the team claims that
this was responsible for not doing better in the contest (zones were in-
stable).

AiWYX: The chinese team consisted of just one person, a bachelor of sci-
ence. He has a background in knowledge representation, game theo-
ries and distributed algorithms and used just plain C++. He invested
ca. 250 person-hours and wrote 10000 lines of code. No agent pro-
gramming technology was used at all, the system was centralized, all
agents share their knowledge to build the map.

The strategy is to first go for areas where nobody else is and trying to
expand them. If enemies attack, the agents draw back and look for bet-
ter zones rather than attacking the enemies. Agents can dynamically
change their behaviour at run-time. A big problemwas that the agents
did not attack the enemy team and that attacks from the enemy were
not parried in a suitable way which resulted in instability of the zones.

PGIM: The iranian team consisted of one scientist and three students. They
invested 8000 person-hours in total, using 7000 lines of code, to de-
velop adecentralized system. After careful evaluation they chose Prometheus
and Jack. Due to licensing problems, they could not use Jack and had
to redo all in Java. Due to somemisunderstanding of the scenario, they
chose to first attack and destroy the opponents repairer agent, then to
attack other agents and only in the third place to consider building
zones.

Instability of the zones and not being able to conquer zones of some
value were the main drawbacks.

Streett: This teamconsisted of an american studentwho, unfortunately, did
not provide us with any information about his team.

4 Interesting Simulations

In this sectionwe analyse three of themost interesting gamesusingournewly
developed statistics module. This involves analysing the following charts:
(1) summed-up scores, (2) zone scores and achievement scores, (3) zone sta-
bilities.
The summed-up score consists of the achievement-score plus the zone-

score. Note that the achievement score decreases, when the buy action is
executed.

summed-up scores: This chart depicts the summed-up score of each team
in each step of the current simulation.

23 Technical Report IfI-13-01

Interesting Simulations

zone scores and achievement scores: This chart combines the charts for the
step-score (zone-scores + achievement-scores) and the achievement-
scores. The zone-score derives from the number and value of the cur-
rently dominated nodes, while the achievement score sums up (across
all categories) all the achievements so far.

zone stabilities: This chart depicts the zone stabilities of each team in each
step of the current simulation. The zone stability increases for one
team, if the team can hold all conquered nodes over a longer period
of time. If nodes are lost, the value decreases. The exact computation
is as follows: For each node that is dominated by a team in a certain
step the counter is increased by one. If the team does not dominate the
node anymore the counter is reset. The overall zone stability is then
the sum of all node counter values.

4.1 SMADAS-UFSC vs. Python-DTU – Simulation 1

The first simulation of the match between SMADAS-UFSC and Python-DTU
was a close victory for the winners of the contest, by 127.546 to 121.312. The
complete visualization of the simulation can be downloaded from our web-
page 9. Both teams started even, with a very small edge to Python-DTU in
the first few steps. Then, SMADAS-UFSC took over from step 35 until step
259. Python-DTU managed to recover the lead at that point for around 50
steps but with no considerable difference. Finally, SMADAS-UFSC took over
again from step 309 until the end of the simulation, with a tendency to fur-
ther increase the score difference. Figure 2, which shows the summed scores
at each step, presents this visually.
Figure 3 shows the step-score at each step (i.e., the value of the zone plus

the unused achievement points at each step). To better display how the score
is composed, also the unused achievement points at each step are displayed
in the figure. Changes in step-score suggest that both teams attempted to
conquer differentiated overlapping zones, as both teams maintained their
zone value always above a relatively high minimum, but at several points in
the graph the increase in the score for one team is correlated with a decrease
in the opponent’s score.

4.1.1 Achievements and Buying Strategy

Also fromFigure 3 it becomes clear that the difference in achievement points
is muchmore significant than the difference in the total score. Even though
Python-DTU had more valuable zones during most steps of the simulation,
SMADAS-UFSC earned more points per step because of achievement points.

9http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133

DEPARTMENTOF INFORMATICS 24

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 2: SMADAS-UFSC vs. Python-
DTU (Sim 1): Summed scores.

Figure 3: SMADAS-UFSC vs. Python-
DTU (Sim 1): Step-scores and
Achievement points.

The buying strategy proved to be crucial: the clever strategy implemented
by SMADAS-UFSC, which consisted in buying improvements for only one of
their saboteurs in an attempt to drive the other teams to spendmore achieve-
ment points inmore agents, worked perfectly in this case. Both teams earned
the same number of achievements points: 68. But Python-DTU spent 48 of
those points improving the saboteurs, whereas SMADAS-UFSC only used 16
for improving one of theirs. This meant a difference that at the end of the
match was of 32 extra points per step for SMADAS-UFSC with little varia-
tions after step 350, which was not easily compensated by the zone-score. A
point to remark here is that doubling the number of agents per team with
regards to the previous edition of the Multi-Agent Programming Contest in-
creased the efficacy of this strategy.

It is worth noticing that, while SMADAS-UFSC attempted to start their
buying strategy as early as possible (and also to earn asmany achievements as
early as possible), Python-DTU’s approachwas to compensate for the aggres-
sive buying strategy by delaying the first round of buys until step 150. Half
of the 16 achievement points spent by SMADAS-UFSCwere spent before step
10. Their strategy also attempted to detect whether the other time was buy-
ing improvements to limit their own buys, and that explains the later buys
at step 175.

Nevertheless, even when in general the buying strategy played in favor of
UFSC-SMADAS, there seems to be a correlation between the first bulk of buys
for Python-DTU at step 150 and an increase in their step scores. On the other
hand, at that point of the simulation both teams were still scattered on the
map and had not yet committed to defend a certain area.

25 Technical Report IfI-13-01

Interesting Simulations

Figure 4: SMADAS-UFSC vs. Python-DTU (Sim 1): Zones’ Stability.

4.1.2 Zone Stability

The zone-stability10 graph in Figure 4 reaffirms the idea of overlapping but dif-
ferentiated zones. Both teams’ zone-stability have a clear tendency towards
increasing, which means that a number of nodes remain unchallenged. At
the same time, none of the zone-stability lines is smooth, whichmeans that
several nodes were being lost and recovered during simulation.

Two examples of area domination, one for each team, are presented in Fig-
ures 5 and 6. In Figure 5, at step 338 the value of the zone for Python-DTU
was 223 and 140 for SMADAS-UFSC. In Figure 6, at step 417 those were re-
spectively 160 and 219.

4.1.3 Actions per Role

SMADAS-UFSC. SMADAS-UFSC’s Explorers used the recharge action the
most, 55 percent of the times, followed by the goto action (35 percent). The
probe action was used 303 times (10 percent), 302 of which were successful
even though the map had only 300 vertices. The survey action was only

10The zone- stability is ameasure that increases when a team keeps dominance of a node, with-
out taking into account the values of the nodes. It was designed for post-match analysis only,
as it is not used for computing the scores.

DEPARTMENTOF INFORMATICS 26

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 5: SMADAS-UFSC vs. Python-
DTU (Sim 1): Simulation after 338
steps.

Figure 6: SMADAS-UFSC vs. Python-
DTU (Sim 1): Simulation after 417
steps.

used 16 times (less than 1 percent). The Sentinels executed the recharge ac-
tion half of the times, followed by the goto action (38 percent). They also
used the parry action 10 percent of the times and the survey action only 2
percent. The Saboteurs were quite aggressive, using the attack action in 51
percent of all cases (85 percent of the attackswere successful). Therecharge
action was used 32 percent of the times, And the goto action in only 16 per-
cent of the cases, meaning they were somehow static. The survey action
was also only used in less than 1 percent of the times (18) and the buy ac-
tion, as mentioned before, was used 8 times. The Repairers executed goto,
recharge and repair close to a third of the times each (39 percent, 30 per-
cent, and 28 percent respectively). They also chose the survey action and
the parry action around 1 percent of the times each. Finally, the Inspectors
used mainly the recharge action (58 percent) followed by the goto action
(38 percent). The survey action was used only 63 times (2 percent) and the
inspect action even less, 33 times (1 percent).

Python-DTU. The Explorers from Python-DTU used the recharge action
extensively, 75 percent of the times. The goto action, in contrast, was used
15 percent of the times. The probe actionwas used on 305 occasions (10 per-
cent), of which 300were successful (the number of vertices on themap). The
survey action was used only in two occasions. The Sentinels also used the
recharge action 75 percent the times. It was followed by the parry action,
13 percent of the times, although less thanhalf of the parrieswere successful.

27 Technical Report IfI-13-01

Interesting Simulations

They used the goto action even less than the Explorers, only 8 percent of the
times. They also used the survey action 5 percent of the times. The Sabo-
teurs used the attack action 38 percent of the times (76 percent of the at-
tackswere successful). Therecharge andgoto actionswere used 30 percent
of the times each. The buy action was used 24 times. They used the survey
action only once. The Repairers executed the goto action 35 percent of the
times and therepair action 34 percent. The third choicewas therecharge
action, 26 percent of the times. They opted for the parry action 83 times (3
percent, less than half of the parries were successful) and for the survey ac-
tion 36 times (1 percent). Finally, the Inspectors used the recharge action
the most (67 percent). They used the inspect actionmuchmore than they
rivals (24 percent) and the goto actionmuch less (9 percent). They only sur-
veyed in 4 occasions.

4.2 SMADAS-UFSC vs. Python-DTU – Simulation 2

The second simulation of the match between the winners and runner-ups
of the contest was won by the latter, by an even closer score of 120.450 to
115.076. Thus Python-DTU maintained the lead during the whole simula-
tion, although SMADAS-UFSC reduced that difference to just 2.474 points at
step 578. This is shown in Figure 7. The complete visualization of the simu-
lation can be downloaded at our webpage 11.

Figure 7: SMADAS-UFSC vs. Python-
DTU (Sim 2): Summed scores.

Figure 8: SMADAS-UFSC vs. Python-
DTU (Sim 2): Step-scores and
Achievement points.

11http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120

DEPARTMENTOF INFORMATICS 28

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 9: SMADAS-UFSC vs. Python-
DTU (Sim 2): Simulation after 362
steps.

Figure 10: SMADAS-UFSC vs.
Python-DTU (Sim 2): Simulation
after 481 steps.

4.2.1 Zone Scores and Stability

Figure 8 presents the Step-scores and achievement points at each step of sim-
ulation 2. In spite of the two high peaks in the score for SMADAS-UFSC, the
advantage for Python-DTUwas clear duringmost of the simulation.
The map in this simulation has different characteristics compared to the

first simulation: The most valuable nodes were scattered towards the outer
edges of the graph. A clear pattern of which zones each teamwould attempt
to dominate and keep, did not emerge until around step 250. Two different
moments during the simulation are presented in Figure 9, at step 362, where
the value of the zone for Python-DTUwas 176 and64 for SMADAS-UFSC; and
in Figure 10, at step 481,where the valueswere 172 and243 respectively. Both
figures exemplify what happened during the game, once the teams settled
for a region of the map: Python-DTU conquered two zones far away from
each other, and although those zones were not very big, they were very sta-
ble: In fact, one of the two remained practically unchanged during most of
the simulation.
SMADAS-UFSC, on theother hand,managed to build the biggest andmost

valuable zone by isolating the bottom of the map. However, this was an un-
stable zone that they were not able to keep for a very long time. Further-
more, SMADAS-UFSC’s agentswere not standing on themost valuable nodes
of that zone, sowhenever the zone collapsed, those nodes were lost and thus
the zone-score decreased significantly.
Figure 11 shows this differencewith respect to zone-stability for each team.

29 Technical Report IfI-13-01

Interesting Simulations

Figure 11: SMADAS-UFSC vs. Python-DTU (Sim 2): Zones’ Stability.

As zone-stability takes into account the number of nodes in the zones, the
two peaks in the zone-score of SMADAS-UFSC are also slightly reflected in
the zone-stability graph. Nevertheless, zone-stability for Python-DTU is still
much higher.

4.2.2 Achievements and buying strategy

During the second simulation, the buying strategy applied was the same
as during the first one. This time, SMADAS-UFSC earned 68 achievement
points and spent 14, whereas Python-DTU earned 66 and used 40. Nonethe-
less, as it can be seen in Figure 8, during this simulation the difference in
achievement-points was not enough to compensate the difference in the
zone-scores.

4.2.3 Actions per Role

SMADAS-UFSC. The Explorers of team SMADAS-UFSC used the recharge
action in 61 percent of all cases, followed by goto (31 percent) and probe
(8 percent). The survey action was only executed 10 times and the buy
action was not used at all. Also, the Sentinels spend a lot of their time for
recharging, i.e., the recharge action was used in 60 percent of all cases. Ad-
ditionally, the main actions for this role were the goto action (31 percent)

DEPARTMENTOF INFORMATICS 30

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

and the parry action (7 percent / 5 percent successful). Although the in-
tended main purpose of the sentinel was to be used for surveying the edges
the survey action was just used in 2 percent of the cases. Probably, because
of the high visibility range of this role together with the information of the
other roles these few executions were still enough. Finally, this type of agent
did not buy anything. The behaviour of the Saboteurs was implemented in
the following way. The attack command was executed 1302 times, i.e., in
43 percent of all cases, and was almost always successful (1123 times or 37
percent). The recharge action (37 percent) and the goto action (19 per-
cent) were the second and third most used actions. The survey (25 times)
and buy (7 times) action were only used sometimes, however the buy action
was only used by this particular role. The main purpose of the Repairers was
to go to some agents and repair them, therefore the goto (37 percent), the
recharge (34 percent), and the repair (26 percent) action were used most
often. The survey action was executed 42 times and the parry action 37
times (out of that 21were successful). This is a huge difference to the Python-
DTU Repairer that parried just one attack. Lastly, the Inspectors used mainly
therecharge (72 percent) andgoto action (25 percent). Thesurvey action
was used 53 times and inspect 20 times.

Python-DTU. TheExplorersof teamPython-DTUhowever used therecharge
action extensively (more than 75 percent of all cases), followed by the goto
action (14 percent) and probe action (8 percent). The survey and buy ac-
tion were never used. The Sentinels executed the recharge action quite of-
ten (62 percent), followed by the parry (18 percent in total, but only 6 per-
cent successful) and the goto action (12 percent). The survey action (7 per-
cent)was only used seldom. Thebuy actionwas not used at all. The Saboteurs
used the attack action in 39 percent of the cases. 33 percent were success-
ful. A little bit less was the recharge action executed (33 percent in total
/ 30 percent successful). The goto action was applied in 27 out of hundred
times. Additionally, this agent was the only one using the buy action. The
action was used exactly 20 times, i.e., in 0.67 percent of the cases. Finally,
the agent did not use the survey action once. The Repairers executed goto
in 38 of the cases, followed by the repair (28 percent) and recharge action
(33 percent in total / 31 percent successful). The survey action was used
17 times, the parry action just three times (out of that only one was suc-
cessful) and the buy action was never executed. Finally, the Inspectors used
mainly the recharge action (83 percent), followed by inspect (11 percent)
and goto (5 percent). The survey action was executed 5 times and buywas
never used.

31 Technical Report IfI-13-01

Interesting Simulations

4.3 PGIM vs. AiWYX – Simulation 1

The team AiWYX clearly won all simulations against PGIM. While the first
simulation ended 81562 to 212016, the second resulted in 68748 to 107600
and the last in 75846 to 112466. The final position ofAiWYXwas 5 and PGIM
got the 6th place.

Figure 12: PGIM vs. AiWYX (Sim 1):
Summed scores.

Figure 13: PGIM vs. AiWYX (Sim 1):
Step-scores and Achievement points.

During the beginning of the match both teams were at the same level. At
step 170 AiWYX conquered an area of more than 640 nodes but was not able
to keep it for a longer period (cf. Figure 14). At step 312 AiWYX finally stabi-
lized its zone(s) (cf. Figure 16 and 15). The team PGIM, however, was not able
to conquer zones larger as 160 nodes and got therefore only the achievement
for holding 80 nodes at the same time.

AiWYX used a novel strategy (not seen in the competition so far) for build-
ing zones: Instead of trying to conquer a small zone, probing the nodes in
order to increase the value of the zone and finally defending, the team was
positioning itself around an opponent’s zone and thereby isolating the op-
ponents zone from the rest of the graph. Figure 14 shows such a zone. At
step 312 AiWYX finally stabilized its zone(s) (cf. Figure 15 and 16). As one
can see this resulted in very large zones, basically containing all nodes the
opponents did not conquer.

Nevertheless due to the lack of probing all conquered nodes the team Ai-
WYX did not score all possible points but only a small subset. Additionally,
the strategy was highly depending on the size of themap andmore effective
on largermaps. That is probably the reasonwhy the teamAiWYX scored the
most points per simulation but did not reach a better place in the competi-
tion.

The complete visualization of the simulation can be downloaded fromour

DEPARTMENTOF INFORMATICS 32

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 14: Simulation after 170 steps. Figure 15: Simulation after 312 steps.

webpage 12. In the following, we will discuss this simulation inmore detail.

4.3.1 Scores

The evolution of the zone scores and achievement points are depicted in Fig-
ure 13. While the development of the achievement points is similar (both
teams did not invest the points for agent improvements), the flows of the
zone scores are different. From step 0 to 300 it was a head to head competi-
tion but after step 312 AiWYXwas able to occupy a large zone and PGIM was
not able to increase its zone score anymore.

4.3.2 Zone Stability

The zone stability of team PGIM was low, i.e., under 500 points per step. In
contrast, the zone stability of AiWYXwas quite good and was almost always
higher than that for PGIM. This is one reason why the team AiWYXwon the
match.

4.3.3 Achievements

The team AiWYX conquered a zone with an impressive value of 640 points,
attacked 640 times the opponents successfully, probed 160 nodes, and sur-
veyed 640 edges. Additionally, It inspected 20 times an opponent. An inter-
esting fact is that the agents did not try to parry an attack.

12http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148

33 Technical Report IfI-13-01

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148

Interesting Simulations

Figure 16: PGIM vs. AiWYX (Sim 1): Zones’ Stability

The team PGIM made the following highest achievements: It conquered
an area of 80 nodes, attacked 320 successfully, probed 80 nodes and surveyed
640 edges. It inspected 10 times an opponent and parried 40 times attacks
successfully.

4.3.4 Actions per Role

AiWYX. The Explorers of team AiWYX used the recharge action exten-
sively (more than 50 percent of all cases), followed by the goto action (35
percent) and probe action (10 percent). The survey action was just used in
just 1.7 percent. The Sentinels executed the recharge action quite often (53
percent), followed by the goto action (32 percent) and the survey action (4
percent). The Saboteurs used the goto action in 42 percent of the cases, fol-
lowed by the attack (35 percent) and recharge action (22 percent). The
Repairers executed goto in 54 the cases, followed by the repair (26 per-
cent) and recharge action (18 percent). Finally, the Inspectors used mainly
the goto (41 percent) and recharge action (56 percent). The inspectwas
just used 18 times (0.6 percent). surveywas executed in 1.73 percent of the
cases.

PGIM. The Explorers of team PGIM however used the goto action in 56 per-
cent of all cases. 19 percent of the time they executed the skip actionwhich

DEPARTMENTOF INFORMATICS 34

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

does not have an effect. It would be more efficient to use the recharge ac-
tion instead. This action was used in 11 percent of the cases. Finally, probe
andsurveywere executed 8 and5percent of the times. The behaviour of the
Sentinels was not optimal. The skip action was the most often used action
(49 percent) followed by a goto command (37 percent). parry (2 percent),
survey (4 percent), and recharge (8 percent) were just used seldom. Also
the behaviour of the Saboteurswasnot implemented in a goodway. Theskip
action was used 1304 times, i.e., 43 percent of all cases although a recharge
(13 percent) would be more efficient. The goto action was executed in 27
percent of all cases, followed by survey (3 percent) and attack (14 percent).
For the Repairers the goto action was the main action (48 percent). This was
followed by the repair (18 percent) and recharge action (21 percent). The
skip actionwas executed 296 times, that corresponds to 10 percent. survey
was used 84 times, i.e., 2,8 percent. The Inspectors used mainly the goto ac-
tion (55 percent), followed by skip (26 percent) while recharge (14 per-
cent) would be the better option. survey was used in 4 percent of the cases
and inspect just 21 times (0,7 percent).

4.4 TUB vs. LTI-USP – Simulation 1

The team TUB won all simulations against LTI-USP. While the first simula-
tion was a head to head finish (it ended 75083 to 77757), the second resulted
in 66660 to 101310 and the last in 85187 to 165577. The final position of TUB
was 3 and LTI-USP got the 4th place.

Figure 17: TUB vs. LTI-USP (Sim 1):
Summed scores.

Figure 18: Step-scores and Achieve-
ment points.

During the beginning of thematch LTI-USPwas performing a little bit bet-
ter than TUB. But at step 582 (Figure 19) TUB started to get more points than
LTI-USP. Although LTI-USP was able to catch up (Figure 20) and temporally
outrun the opponent (Figure 21) in step 706 (Figure 22)TUB took over again

35 Technical Report IfI-13-01

Interesting Simulations

Figure 19: Simulation after 582 steps. Figure 20: Simulation after 668 steps.

Figure 21: Simulation after 669 steps. Figure 22: Simulation after 706 steps.

and won in the end being just some few points in front. The reason for this
was that TUB had a almost stable zone that was bigger than the zone of the
team LTI-USP.

The complete visualization of the simulation can be downloaded fromour
webpage 13. In the following, we will discuss this simulation inmore detail.

13http://www.multiagentcontest.org/downloads/func-startdown/1146/

DEPARTMENTOF INFORMATICS 36

http://www.multiagentcontest.org/downloads/func-startdown/1146/

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 23: Zones’ Stability

4.4.1 Scores

The evolution of the zone scores and achievement points are depicted in Fig-
ure 18. Both teams were performing quite similar, however TUB got more
achievement points. Also, both teams invested some of the achievement
points again for improvements for their agents.

4.4.2 Zone Stability

The zone stability of both teams was quite low, i.e., under 400 points per
step.

4.4.3 Achievements

TeamTUB got all achievements earlier thanLTI-USP and additionally achieved
more. In totalTUB attacked 640 times, surveyed 640 times, proved 160nodes
and conqueredonce an area of 160nodes. Furthermore it inspected 20 agents.
However, the team TUB did not get any achievement points for parrying.
The team LTI-USP attacked only 320 times, surveyed 640 times, proved as

well 160 nodes, parried 160 attacks and inspected also 20 agents.

37 Technical Report IfI-13-01

Interesting Simulations

4.4.4 Actions per Role

Figure 24: TUB Explorer Actions Figure 25: TUB Inspector Actions

Figure 26: TUB Repairer Actions Figure 27: TUB Saboteur Actions

Figure 28: TUB Sentinel Actions

DEPARTMENTOF INFORMATICS 38

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 29: LTI-USP Explorer Actions Figure 30: LTI-USP Inspector Actions

Figure 31: LTI-USP Repairer Actions Figure 32: LTI-USP Saboteur Actions

Figure 33: LTI-USP Sentinel Actions

39 Technical Report IfI-13-01

Interesting Simulations

4.5 Streett vs. TUB – Simulation 2

Streett was the worst-performing team during the 2012 contest and the only
one that was unable to win any simulations. This simulation, that TUBwon
120.565 to 7.174 can be used to explain some of the reasons for Streett’s bad
performance.

Figure 34: Streett vs. TUB (Sim 1):
Summed scores.

Figure 35: Step-scores and Achieve-
ment points.

Themost notable issue regarding Streett’s bad performance had to do with
disabled agents, for which the team had many flaws. Firstly, disabled agents
weren’tmoving at all and only used the recharge action, presumablywaiting
for repairs. Secondly, only one of the four repairers was executing the repair
action, while the other three only recharged andmoved around, possibly at-
tempting to contribute in zone making. Finally, the only active repairer was
buggy: it only repaired another agent successfully three times at the begin-
ning of the simulation; afterwards, it remained static in a node along with
two disabled teammates but always attempted to repair another agent that
was in a different node, and thus failed. The result was that Streett only had a
few agents active throughout the game, and were only those that remained
away from the enemy’s zone.

The situationwasmore or less stable relatively soon: at step 60 (Figure 36),
half of the agents from Streett were disabled, while the repaired shared a node
with two of them. TUB had built a valuable zone and used their agents to
defend it until the end of the game. By step 200 (Figure 37) Streett had lost 13
agents. Figure 38 shows themoment when another agent from Streettmoves
close to TUB’s area and gets attacked and disabled. The 14 disabled agents
remained in the exact same positions until the end of the game (Figure 39).

The complete visualization of the simulation can be downloaded fromour
webpage 14.

14http://www.multiagentcontest.org/downloads/func-startdown/1095/

DEPARTMENTOF INFORMATICS 40

http://www.multiagentcontest.org/downloads/func-startdown/1095/

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 36: Simulation after 60 steps. Figure 37: Simulation after 200 steps.

Figure 38: Simulation after 390 steps. Figure 39: Simulation after 750 steps.

4.5.1 Scores

Thedifference in the scorewas almost exclusively because of the zone’s score.
Both teams stabilized in differentiated parts of the map, but while TUB used
all the agents to build a big, valuable zone, Streett only built two very small,
almost worthless zones involving very few agents, the rest of thembeing dis-
abled and never repaired.

41 Technical Report IfI-13-01

Interesting Simulations

Figure 40: Zones’ Stability

4.5.2 Zone Stability

TUB zone was big and stable as can be seen in the Zone Stability graph: al-
though the value is fluctuating, the trend is always increasing. Streett also
had an increasing trend in it’s zone stability graph, although with much
lower values.

4.5.3 Achievements

In the beginning of the simulation both teams where more or less even in
terms of achievements earned. Nevertheless, TUB kept earning new achieve-
ments throughout the game, whereas Streett lost effectivity soon (step 32).
None of the teams earned parry achievements, and both earned only few at-
tack achievements: only attack5 for Streett and attacked20 for TUB, the
latter due to disabled Streett’s agents not being repaired.
Both teams spent achievement points in improvements: TUB ended the

match with 2 achievement points after having spent 40, and Streett spent all
the 28 achievement points earned during the simulation.

DEPARTMENTOF INFORMATICS 42

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

4.5.4 Actions per Role

Figure 41: Streett Explorer Actions Figure 42: Streett Inspector Actions

Figure 43: Streett Repairer Actions Figure 44: Streett Saboteur Actions

Figure 45: Streett Sentinel Actions

43 Technical Report IfI-13-01

Interesting Simulations

Figure 46: TUB Explorer Actions Figure 47: TUB Inspector Actions

Figure 48: TUB Repairer Actions Figure 49: TUB Saboteur Actions

Figure 50: TUB Sentinel Actions

DEPARTMENTOF INFORMATICS 44

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

5 Summary, Conclusion and Future of the Con-

test

This paper provides anoverviewof themost recent editionof theMulti-Agent
Programming Contest. We have introduced the Contest in general, and we
elaborated on the current scenario in a more detailed way. We have also
introduced the teams that took part and evaluated their performance. We
compared three of themore interestingmatches using our new visualisation
and statistics modules.
This is our third newly designed scenario that we will also use, with some

modifications and lessons learned from the 2012 edition, for the Contest in
2013. It is time to lean back and consider what we have achieved so far.What
conclusions (if any) can we draw from the “Agents on Mars” scenario? Can we
observe some trends in the quality of the teams? What is the impact on the ProMAS
community? While these are critical and difficult questions that might be
answered differently by different people, we collect a few observations that
we consider relevant.

• Both times a dedicated Multi-Agent Programming Language/Platform
won, but runner-up was Python-DTU, which did not use a dedicated
platform, but was inspired byMAS technology.

Nevertheless, other examples (e.g., the teams ranked 5–7 in this years
edition) show that adhoc implementations seem toperformworse than
MAS inspired systems.

• The introduction of a qualification round increased the stability of the
teams and therefore the whole contest a lot. This feature will be kept.

• Teams performing for the second time usually perform better. But the
winners were both first time participants.

• The contest helped a lot to find bugs in the used platforms. This is
an observation we made throughout the history of the contest. So it
seems the scenario is demanding and most features of the used plat-
form/language are indeed used (so that potential bugs surface). One
teamparticipated exactly because of this reason (testing their platform).

• We usually end up with as few as 7 to 9 teams that seriously want to
participate. We believe this number could be much higher and does
not really show a great impact on our community. On the other hand
we have quite a variation: it is not always the same participants. Over
the last 3 years, we had 20 different teams participating.

• The overall performance of the teams improved a lot with each new
contest, although we increased the complexity considerably (size of
the map, number of agents, difficulty of the task).

45 Technical Report IfI-13-01

References

• Compared with the cows and cowboys scenario, we see much more co-
operation among the agents, more dynamic behaviour, and a lot more
interaction with the opposing team. In addition, the data to be han-
dled (observing the environment, messages between the agents) has
also increased a lot. While we have not yet excluded centralized ap-
proaches, the sheer amount of data makes it difficult for the systems to
provide each agent with the central memory of the whole system.

Also, in the current scenario, the computational costs of Dijkstra’s al-
gorithm is high so that it is not feasible for all agents to execute it at the
same time.

• In the current scenario, there are indications that buying health and
strength is much more important than investing the money for other
reasons. Thus it may pay off to find a more balanced scenario that al-
lows for more diverse strategies of the teams. This point makes us re-
consider the precise values of the different parameter we have in our
scenario.

The amount of work that went into implementing a team varied from one
person with 250 person-hours to 6 people with 800 person hours and from
1500 to 10000 lines of code (the latter because no dedicated technology was
used, interestingly, that was done by one single person).

It would be interesting to assess if it would be beneficial to steer the Con-
test into a more specialized direction in order to strengthen its niche in the
research ecology. This includes but is not limited to focusing on the plan-
ning aspect of the competition, leaving behind path planning as the main
facet of agent deliberation.

We could also focus on using a massive number of agents: lots of agents
with different roles and thus different capabilities. This would allow us to
take into account the scalability of agent-oriented programming platforms.

Additionally it would be worthwhile to focus on agent communication
and to evaluate that aspect of the tournament by routing agent-messages
through theMASSim server for proper evaluation.

Last but not least, the most important part of the contest are the contes-
tants: We hope to attract more teams in the future — the contest is an excel-
lent opportunity for a student project on Bachelor or Master level.

References

[1] T. Behrens, M. Dastani, J. Dix, M. Köster, and P. Novák, editors. Special
Issue about Multi-Agent-Contest, volume 59 of Annals of Mathematics and
Artificial Intelligence. Springer, Netherlands, 2010.

DEPARTMENTOF INFORMATICS 46

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

[2] Tristan Behrens, Mehdi Dastani, Jürgen Dix, Jomi Hübner, Michael
Köster, Peter Novák, and Federico Schlesinger. The multi-agent pro-
gramming contest. AI Magazine, to appear, 2013.

[3] Tristan Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent
contest competition - 4th edition. In Proceedings of Sixth international
Workshop on Programming Multi-Agent Systems, ProMAS’08, volume 5442
of LNAI. Springer, 2008.

[4] Tristan Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent
contest competition: 4th edition. In Koen V. Hindriks, Alexander
Pokahr, and Sebastian Sardiña, editors, Programming Multi-Agent Sys-
tems, 6th International Workshop (ProMAS 2008), volume 5442 of Lecture
Notes in Computer Science, pages 211–222. Springer, 2009.

[5] Tristan Behrens, JürgenDix, JomiHübner,Michael Köster, and Federico
Schlesinger. MAPC 2011 Documentation. Technical Report IfI-12-01,
Clausthal University of Technology, December 2012.

[6] Tristan Behrens, JürgenDix, JomiHübner,Michael Köster, and Federico
Schlesinger. MAPC 2011 Evaluation and Team Descriptions. Technical
Report IfI-12-02, Clausthal University of Technology, December 2012.

[7] Tristan Behrens, Koen Hindriks, and Jürgen Dix. Towards an environ-
ment interface standard for agent platforms. Annals of Mathematics and
Artificial Intelligence, 61:3–38, 2011.

[8] Tristan Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and
Jomi Hübner. The Multi-agent Programming Contest 2011: A Résumé.
In Louise Dennis, Olivier Boissier, and Rafael Bordini, editors, Program-
ming Multi-Agent Systems, volume 7217 of Lecture Notes in Computer Sci-
ence, pages 155–172. Springer Berlin / Heidelberg, 2012.

[9] Mehdi Dastani, JürgenDix, and Peter Novák. The first contest onmulti-
agent systems based on computational logic. In Francesca Toni and
Paolo Torroni, editors, Computational Logic in Multi-Agent Systems, 6th
InternationalWorkshop, CLIMA VI, volume 3900 of Lecture Notes in Com-
puter Science, pages 373–384. Springer, 2005.

[10] Mehdi Dastani, Jürgen Dix, and Peter Novák. The second contest on
multi-agent systems based on computational logic. In Katsumi Inoue,
Ken Satoh, and Francesca Toni, editors, Computational Logic in Multi-
Agent Systems, 7th International Workshop, CLIMA VII, volume 4371 of
Lecture Notes on Computer Science, pages 266–283. Springer, 2006.

[11] Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest competi-
tion - 3rd edition. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni,

47 Technical Report IfI-13-01

References

and M.Winikoff, editors, Proceedings of ProMAS ’07, Revised Selected and
Invited Papers, number 4908 in Lecture Notes in Artificial Intelligence,
Honululu, US, 2008. Springer.

[12] Michael Köster, Federico Schlesinger, and JürgenDix. MAPC 2012 Eval-
uation and Team Descriptions. Technical Report IfI-13-01, Clausthal
University of Technology, jan 2013.

DEPARTMENTOF INFORMATICS 48

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Part II

TeamDescriptions

49 Technical Report IfI-13-01

SMADAS-UFSC

6 SMADAS-UFSC

Team SMADAS-UFSC is from Federal University of Santa Catarina, Brazil.
It had six team members. The language of choice for agent development
was Jason. Besides normal agent-communication provided by Jason, agents
shared a common data-structure (blackboard) for storing the graph topol-
ogy.

DEPARTMENTOF INFORMATICS 50

SMADAS: a Cooperative Team for the

Multi-Agent Programming Contest using Jason

Maicon Rafael Zatelli, Daniela Maria Uez, José Rodrigo Neri,
Tiago Luiz Schmitz, Jéssica Pauli de Castro Bonson, and Jomi Fred Hübner

Department of Automation and Systems Engineering
Federal University of Santa Catarina

CP 476, 88040-900 Florianópolis - SC - Brasil
{xsplyter,dani.uez,jrf.neri,tiagolschmitz,jpbonson}@gmail.com,

jomi@das.ufsc.br

Abstract. In this paper we describe the SMADAS system used for the
Multi-Agent Programming Contest in 2012. This contest offers an useful
context to evaluate tools, techniques, and languages for programming
MAS. It is also a good opportunity to learn agent programming and test
new features we are developing in our projects. Throughout the paper we
highlight the main strategies of our team and comment on the advantages
and disadvantages of our system as well as some improvements that still
could be done. One important result from this experience regards the
agent programming language we used, it provides suitable abstractions
for the development of complex system and shows an increment in its
maturity since no bugs was discovered this year.

1 Introduction

The empirical evaluation of proposals in the context of Multi-Agent Systems
(MAS) is a quite complex task and the Multi-Agent Programming Contest [1,
3]1 offers an useful context for doing this evaluation. In particular, the latest
Mars scenario has emphasised solutions based on cooperation, coordination, and
decentralisation which are important topics for our research. This contest is thus
selected as the environment to evaluate the proposals being developed by the
authors in their master and Phd thesis. Among the authors, we have one PhD
student, three master students, and one undergraduate student. The main ap-
proach is (i) to develop a base MAS for the contest, then (ii) the master and PhD
students will change the base system using their corresponding proposals, and
finally (iii) each proposal can be evaluated and compared against the base sys-
tem. In this paper we report the development and the main features of this base
team, called SMADAS (the acronym of our research group). Another objective
for attending the contest is to improve the experience in developing MAS. Since
most of the authors are just beginning on the domain, the concrete experience
is important for their overall learning and maturity in critical analysis.

1 http://multiagentcontest.org

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

51 Technical Report IfI-13-01

2 System Analysis and Design

For the analysis of our systems, we adopted a prototype driven approach instead
of a well known software engineering methodology because the problem seemed
quite simple to solve and we had no experience with them. Thus we decided that
it was better to use our time developing the system than learning a methodology.

Based on the agent contest scenario description, we divided the overall prob-
lem in sub-problems, each one analysed in detail: exploration, exploitation, at-
tack and defense, buy, repair, and inspection. A team member was engaged with
programming each strategy discussed on biweekly meetings. Forty five versions
of the system were produced in this phase. These versions were tested and com-
pared with the best teams from the last contest [6, 8, 7, 2] and also against our
own versions of the system in order to select the most efficient one. In these
preliminary tests, we identified some good strategies for the final implementa-
tion. To develop the SMADAS system, we spent about 500 hours, most of them
testing the strategies.

The system has 20 agents of five types: repairer, saboteur, explorer, sentinel,
and inspector. We considered two main distinct phases: exploration, in which the
explorers identify all vertices and nodes in the map and find the best zones, and
exploitation, where all agents try to conquest and defend these zones. During
the match, if an agent senses a nearby enemy it calls a saboteur to attack it,
and also if the agent is damaged it tries to find a repairer to be fixed.

Our agents are able to decide their own actions, however this autonomy
produces some conflicting situations like two agents deciding to exploit different
zones. These situations are solved using a centralized approach, which consists
of a specific agent been responsible for the group decision. For example, one of
the explorers defines the zones to exploit and one of the repairers defines the
reparation order. Some conflicting situations are simply prevented by using a
predefined priority order among the agents, where agents with higher priorities
acts before agents with less priority.

The coordination among the agents is based on two communication mecha-
nisms: blackboard and message exchanging. The blackboard is used to provide
a global graph view to the agents, since some important information about the
graph structure is synchronized in it. We decided to use a blackboard because
the agents need an overall view of the scenario to be able to define the system ex-
ploitation strategy. The message exchanging is used to share information about
the inspected enemies, the ally agent actions and damages, and about the map
zones. The communication protocol used when a damaged agent needs to be re-
paired is shown in Fig. 1. It consists of the agent asking a repairer that contacts
the other repairers to find out which one is the closest to the damaged agent.
Then the other repairers inform their positions and the closest one is selected to
repair the damaged agent. Thus, the selected repairer will send to the damaged
agent the meeting path.

The SMADAS system is a truly MAS because the agents are autonomous,
reactive, and proactive. They have autonomy to decide how and when to execute
most of their actions, except the few conflicting situations explained before.

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 52

Fig. 1: A communication protocol used to define which repairer will repair a
damaged agent. The damaged agent asks the repairer1 for help, the repairer1
then contacts the others repairers to find which one is the closest to the damaged
agent. All repairer send their position and the repairer1 elects the closest one.
The selected repairer then sends the meet point to the damaged agent.

However, the agents also perform some actions in reaction to environment events,
like the start of the step or a received message. Other reactive actions occurs
when a saboteur attacks an enemy agent that is in the same vertex or when an
agent runs away or defends itself from an enemy saboteur on the same vertex.
Furthermore, the agents have a proactive behaviour, that shows up when they
try to find a better vertex that improves the team score, contact the repairer
when they are damaged, or look for enemies to attack.

3 Strategies

In our strategy both individual and group behavior are important. While the
individual behavior is important when the agents are isolated in the map, the
group behaviour is responsible for preventing redundant actions and for produc-
ing a coherent and cooperative global result. The agents are proactive in order
to get achievement points and obtaining a good score. They also use their beliefs
and the exchanged information to decide their next action.

As commented in the previous section, we consider two main strategies: ex-
ploration and exploitation. In the exploration phase the agents just explore the
map and try to get as most achievement points as possible. After step 15, our
agents go to a good zone to conquer it.

Since achievement points are important and they accumulate in each one of
the 750 steps, it is desirable to obtain them as soon as possible. However, some
achievements are more complicated to conquer after some time, hence they can
be ignored. For example, it does not make sense to survey all edges in the graph,
considering it takes a long time to be performed. Instead of it, our agents stay
in a vertex getting more score by exploiting water wells. For the same reason we

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

53 Technical Report IfI-13-01

are not interested on inspecting all opponent agents, thus our inspectors only
inspect them when they are near.

After the exploration phase, the exploitation phase starts. One of our ex-
plorers reasons about which are the two best zones in the map to be exploited.
Exploiting two zones is advantageous since the map is symmetric and it is partic-
ularly important against teams that keep only one zone. In order to do that, we
used a modified version of the BFS algorithm, that is run for all vertex, summing
their values until some depth. The vertex with the highest sum represents where
the best zone is (zone 1). After it, the algorithm tries to find the second best
vertex to set the second best zone (zone 2), which may have some intersection
with the first one. This algorithm is not optimal because its result is always a
circular shape, when the ideal choice often has a free shape.

When the good zones are defined, an explorer organises the agents in two
groups, one for zone 1 and another for zone 2. Each group has 10 members,
with two agents of each type. The agents are then informed about the central
vertex of its zone and how far they can go from it. The central vertex of an area
is the one discovered in the exploration phase with the best sum. The distance
they can go from it defines the border of the corresponding zone. After it, the
agents are positioned in their zones. The non-saboteur agents take positions in
vertices that have two neighbour vertices belonging to our team, but without
anyone there. The saboteur agents scout their zones and attack opponents inside
it, they also attack near enemy zones. We assume that if the enemy zone is not
near, the opponent probably has a small zone and we do not need to attack
them.

Table 1 shows the strategies and plans for each type of agent. There are
plans with more steps (buy, repair, probe) and plans where the agents simply
react (attack, parry, inspect, recharge, survey). We noticed that usually long-
term plans are not a good idea, because the environment changes quickly. The
strategies are explained in more details below.

– Buy: we concluded that it is be better to do not buy many things. We noticed
it through tests between our MAS with a buying strategy where the agents
buy more things against one where the agents just buy few things, and
the second strategy won all matches in all simulations. Firstly the buying
strategy consisted of only buying upgrades for the saboteurs: buy sabotage
devices to have a strength equal to the highest enemy saboteur health value,
and buy shields to have health one time greater than the highest enemy
saboteur strength value. We did a second version of this strategy where just
one saboteur (Hulk) buys upgrades, this had the benefit of decreasing our
expenses while also making agent teams with a similar strategy waste money.
Another improvement of the buying strategy was the addition of an agent
named Coach, which received information about our enemies upgrades from
the inspectors and used them to notice whether the enemy team is buying
or not, if they were not buying anything this agent informs the agent Hulk
to stop buying upgrades in the matches against this team and then save
achievement points.

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 54

– Attack: the saboteurs always attack the opponent saboteurs first, and then
the repairers. However, in the initial steps, attacking the explorers would be
a good second option too, since it would be harder for the opponent team to
explore the map. In order to prevent redundant attacks, there is a hierarchy
defining which saboteur attacks first.

– Repair: the repair strategy consists of finding the closest available repairer to
help a disabled agent, after it the repairer and the damaged agent move close
to each other. If there are no available repairers the disabled agent moves
to the closest repairer. If there is another closest disabled agent to repair or
another repairer, they cancel the process and start it again with the closest
agent.

– Parry: if there is an opponent saboteur in the same vertex that our agents,
the formula 1/N defines the parrying probability, where N is the number
of ally agents in the same vertex. This way we can prevent all agents from
parrying the same saboteur. Our agents do not parry if there are more or the
same number of ally saboteurs and opponent saboteurs, since the opponent
probably will attack our saboteurs first. If an agent chooses not to parry,
then it leaves the vertex.

– Probe: the explorers always probe the closest unprobed vertex and they
repeat it until all vertices are probed. To avoid explorers probing the same
vertex, there is a hierarchy which defines the explorers who act first.

– Inspect: the inspectors always inspects near enemies, the aim of inspection
is to identify enemy saboteurs and to check if the opponent is using a buying
strategy.

– Recharge: the agents always check if they have enough energy before doing
an action, if they do not have or it is less than 2 points, then they recharge.
They also recharge when they do not have any action to do.

– Survey: the agents only survey if there is an unsurveyed near edge. The
sentinels are the main agents responsible for doing survey, but other agents
do it too if they do not have anything to do in the step.

Action Repairer Saboteur Explorer Sentinel Inspector

buy x(Hulk)
attack x
repair x
parry x x
probe x
inspect x
recharge x x x x x
goto x x x x x
survey x x x x x

Table 1: Implemented strategies by agent type.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

55 Technical Report IfI-13-01

Finally, there are strategies to expand the team zone and to stop expanding.
The goal of the first one is to conquer more vertices in the same zone: when
an agent is participating in a zone occupation and it can go to another vertex
without breaking the zone, it will do it. The second strategy stops the agents
from expanding when they have a high score and to wait for the opponents
reaction.

4 Software Architecture

This section describes the technologies and frameworks that we used to develop
our agents and how they are integrated. We used the EISMASSim framework [4]
to communicate with the contest server, since the competition is built on Java
MASSim platform and Java EISMASSim framework is distributed with the com-
petition files. The programming language used to develop our agents is Jason
(version 1.3.8) [5]. Its concept of BDI agents provided useful resources to build
our agents, like plans and intentions, which allowed us to implement the strate-
gies and to provide our agents with long-term goals. Another advantage of Jason
is its interpreter that allow us to call Java methods, which simplifies the imple-
mentation of some algorithms and enables them to run faster. These methods
are integrated with our Jason agents using internal actions. More specifically
we implemented two algorithms as Java methods: Dijkstra algorithm to find the
best path between vertices and Breadth-First Search algorithm to locate the
best area in the graph.

A blackboard was used to share and build knowledge about the environment
in the form of a graph. The process to update information in the graph has a
high computational cost, lasting more than one step. Therefore, to avoid losing
steps, the graph is updated and shared every three steps. The agent interaction
is divided in two modes: agent-to-environment and agent-to-agent. In the first
mode, in each step the EISMASSim framework receives an XML text from the
server with the agents percepts, these percepts are then translated into Jason
environment perceptions for our agents. This translation however does not hap-
pen when our team conquers the full map and the quantity of perception is so
huge that the agents are not able to process them on time. In this case, percep-
tion is disabled and a default action (e.g. recharge) is sent back to the server.
The actions of the agents are translated into text and sent to the server by EIS-
MASSim. The Fig. 2 exemplifies how actions and percepts are exchanged. The
agent-to-agent interaction uses Jason speech act based communication.

5 Results

We have tried to develop a system as complete as possible and we created several
strategies for each system feature, like exploring, exploiting, buying, repairing,
and attacking. Hence we developed many versions of the system, we exhaustively
tested each one against the others to select the more efficient. We also tested our
system during the contest test phase against the teams provided by the contest

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 56

EIS Server EISMASSim

Environment

XML Percepts/
Action

Black
board

Fig. 2: Communication architecture.

organisation. This approach was our main advantage in the contest and one of
the reasons we played eighteen matches against six different opponents and won
seventeen. However our system has a worse performance when it confronts a
passive system because it is not so offensive. If our agents are in a good map
zone they do not bother about the opponent: they assume that the opponent is
not in a good area. Also, our agents have no focus on defending a conquered zone
and this explains the match we lost against Python-DTU during the contest.

Two main strategies were responsible for the good performance of our sys-
tem: the buying and exploitation strategies. The buying strategy was decisive
because it forced our opponents to reinforce their agents spending a lot of their
money. In a match against Python-DTU during the tests phase, for example, we
conquered a small area but we won because we had more money. Fig. 3a shows
the achievement points from this match. In the step 175 the Python-DTU (in
blue) spent most of their money strengthening their agents and SMADAS (in
green) spent only a part of its money. In the last 400 steps, from the step 350
to the 750, we had about 23 achievement points in each step, summing 9200
achievement points. In the end, this difference allowed us to win this match, as
shown in Fig. 3b.

(a) (b)

Fig. 3: From the step 350, SMADAS-UFSC (in green) has more achievement
points than Python-DTU (in blue) (a). This difference has decided the match
for SMADAS-UFSC system (b).

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

57 Technical Report IfI-13-01

Our exploitation strategy chooses two good zones in the map. It was efficient
because usually the opponents are concerned about finding and conquering just
one good zone. Thus while part of our agents are under attack in one of these
zones, the other part are scoring in another zone. This strategy earns less points
in each step, because our agents are divided in two smaller zones, but it has
better results against an offensive opponent. Fig. 4 shows a comparison from our
system performance using these two exploiting strategies. The system in green
tries to conquer one single zone and the blue system looks for two zones. The
blue system has fewer points at the beginning because it gets two smaller zones.
However after some steps where the green system loses many points disputing a
single zone, the blue system has one fixed zone scoring without any attack. This
strategy was decisive in the match against the AiWYX system.

(a) (b)

Fig. 4: The green system tries to conquer one single zone and the blue system
looks for two zones. The blue system finishes the match with a highest score
because it keeps scoring in a zone without disputing it with opponents.

6 Conclusion

Participating in the contest was a worthy experience for all the team, we learned
a lot about MAS developing and about the tools and languages we used. The
contest result, where our team got the first place, is due both to the dedication on
developing the strategies described in this papers and to the tools we used. For
instance, the Jason programming language supports agent programming with
abstract concepts like plans, beliefs, and goals which are suitable for the problem
and very expressive. Different from previous participations in the contest where
several bugs in Jason were discovered and fixed [9], we did not identify any bug
in Jason this year, which shows the maturity of this language. Although we
can evaluate the used tools positively in general, some features are still missing.

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 58

For example, it was very difficult to change, refactor, and debug the agents
code since we have 5504 lines of Jason code and 20 agent instances running
concurrently. The tools provided by Jason for debugging, like the sniffer and the
mind inspector, are too specific and focused on the details. It is a hard task to
identify a bug by looking at thousand of mind samples or message traces. High
level abstractions and tools are required to help the debugging of complex MAS.

There is still a room for improvements in our system both in the strategies
and the tools. Some of the improvements will be investigated in the authors’
master and PhD thesis where proposals will be compared against the version of
the system described in this paper. One particular drawback of the system is to
be focused only on the agent aspect, all the code is “agent programming”. More
global aspects should be considered, for instance by organisation and interaction
programming as first class abstractions. For that, new models and tools need to
be developed.

For the current scenario of the contest, we would propose two improvements.
(i) Inform opponent’s score. It would allow participants to design strategies based
on the current match result, rising more confrontations. (ii) Leave the graph less
connected to increase the use of edges.

References

1. Tristan Behrens, Mehdi Dastani, Jürgen Dix, Michael Köster, and Peter Novák.
The multi-agent programming contest from 20052010. Annals of Mathematics and

Artificial Intelligence, 59:277–311, 2010.

2. Tristan Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and Jomi
Hübner. The multi-agent programming contest 2011: A résumé. In Louise Dennis,
Olivier Boissier, and Rafael Bordini, editors, Programming Multi-Agent Systems,
volume 7217 of LNCS, pages 155–172. Springer, 2012.

3. Tristan Behrens, Michael Köster, Federico Schlesinger, Jrgen Dix, and Jomi Hübner.
The multi-agent programming contest 2011: A résumé. In Programming Multi-

Agent Systems, volume 7217 of Lecture Notes in Computer Science, pages 155–172.
Springer, 2012.

4. Tristan M. Behrens, Koen V. Hindriks, and Jürgen Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics and Artificial Intel-

ligence, 61(4):261–295, April 2011.

5. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming Multi-

Agent Systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

6. Dominic Carr, Sean Russell, Balazs Pete, G. O’Hare, and Rem Collier. Bogtrotters in
space. In Louise Dennis, Olivier Boissier, and Rafael Bordini, editors, Programming

Multi-Agent Systems, volume 7217 of LNCS, pages 197–207. Springer, 2012.

7. Marc Dekker, Pieter Hameete, Michiel Hegemans, Sebastiaan Leysen, Joris van den
Oever, Jeff Smits, and Koen Hindriks. Hactarv2: An agent team strategy based
on implicit coordination. In Louise Dennis, Olivier Boissier, and Rafael Bordini,
editors, Programming Multi-Agent Systems, volume 7217 of LNCS, pages 173–184.
Springer, 2012.

8. Mikko Ettienne, Steen Vester, and Jrgen Villadsen. Implementing a multi-agent
system in python with an auction-based agreement approach. In Louise Dennis,

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

59 Technical Report IfI-13-01

Olivier Boissier, and Rafael Bordini, editors, Programming Multi-Agent Systems,
volume 7217 of LNCS, pages 185–196. Springer, 2012.

9. Jomi Fred Hübner and Rafael Heitor Bordini. Using agent- and organisation-
oriented programming to develop a team of agents for a competitive game. Annals
of Mathematics and Artificial Intelligence, 59(3-4):351–372, 2010.

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 60

Short Answers

A Introduction

1. What was the motivation to participate in the contest?
A: Evaluate the result of our master and PhD thesis.
2. What is the (brief) history of the team? (MAS course project, thesis evalu-

ation, . . .)
A: Our team was formed by members from the Multi-Agent Systems research

group (called SMADAS) at Federal University of Santa Catarina (UFSC).
3. What is the name of your team?
A: Our team’s name is SMADAS-UFSC.
4. How many developers and designers did you have? At what level of education

are your team members?
A: Our team has six developers and everyone was involved with the system

design. We have one PhD, one PhD student, three masters students and one
undergraduate student.

5. From which field of research do you come from? Which work is related?
A: All team members work with Multi-Agent Systems and Artificial Intelli-

gence.

B System Analysis and Design

1. Did you use a Multi-Agent programming languages? Please justify your an-
swer.

A: We used the Jason language because all members are familiar with it.
2. If some Multi-Agent system methodology such as Prometheus, O-MaSE, or

Tropos was used, how did you use it? If you did not, please justify.
A: We did not use any software engineering methodology because the problem

seemed quite simple to solve and we had no experience with such method-
ologies.

3. Is the solution based on the centralisation of coordination/information on a
specific agent? Conversely if you plan a decentralised solution, which strategy
do you plan to use?

A: The system information is decentralised: each agent has all available infor-
mation about the enemies and the graph. The coordination is centralised in
a few cases, to solve some conflicting situations, like defining which agent
should be repaired first or what is the best zone to exploit.

4. What is the communication strategy and how complex is it?
A: The agents use two mechanisms for communication: a blackboard and mes-

sage exchanging. Some communication protocols are composed by one single
message sent by an agents to others (e.g., when an enemy is inspected or
when an agent report its action). Other protocols use more messages, for ex-
ample when a damaged agent request a repair, nine messages are sent among
the damaged agent and the repairers.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

61 Technical Report IfI-13-01

5. How are the following agent features considered/implemented: autonomy,
proactiveness, reactiveness?

A: The agents are autonomous, reactive, and proactive. They have autonomy
to decide how and when to execute their actions, they react to environment
events and new messages, and are proactive while looking for a better vertex.

6. Is the team a truly multi-agent system or rather a centralised system in
disguise?

A: The tasks of the team are decentralised among the agents which need to
coordinate themselves to produce a coherent global behaviour.

7. How much time (person hours) have you invested (approximately) for im-
plementing your team?

A: We expended about 500 hours developing the system.
8. Did you discuss the design and strategies of your agent team with other

developers? To which extent did you test your agents playing with other
teams?

A: We did not discuss the design or strategy with other teams before the contest.

C Software Architecture

1. Which programming language did you use to implement the Multi-Agent
system?

A: The language used for programming our agents is Jason 1.3.8 [5].
2. How have you mapped the designed architecture (both Multi-Agent and

individual agent architectures) to programming codes, i.e., how did you im-
plement specific agent-oriented concepts and designed artifacts using the
programming language?

A: The BDI concepts provided by the Jason language are the building blocks
to develop our strategies.

3. Which development platforms and tools are used? How much time did you
invest in learning those?

A: We used Eclipse platform with Jason 1.3.8 plug-in. These tools were known
by all team members then we spend just few hours learning new features.

4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java, . . .)
are used? How much time did you invest in learning those?

A: We used EISMASSim framework to communicate with the environment and
spent about 50 hours to learn it. For communication among the agents, we
used Jason centralised infrastructure.

5. What features were missing in your language choice that would have facili-
tated your development task?

A: The Jason language has almost all features we needed to program our agents.
However, for some algorithms, we preferred Java because it is faster.

6. Which algorithms are used/implemented?
A: We used two traditional algorithms for graphs: Dijkstra and breadth-first

search.
7. How did you distribute the agents on several machines? And if you did not

please justify why.

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 62

A: The agents were conceived to execute in the same machine to simplify black-
board programming, which uses shared memory. Future versions of the sys-
tem will use distributed blackboards.

8. To which extent is the reasoning of your agents synchronized with the receive-
percepts/send-action cycle?

A: The synchronisation with the environment is given by the reasoning cycle of
Jason, where the first step includes the perception and the last the action.

9. What part of the development was most difficult/complex? What kind of
problems have you found and how are they solved?

A: A blackboard has been used to share and build the knowledge about the
environment. The process to update information in the graph has a high
computational cost, lasting more than one step. Therefore, to avoid losing
steps, the graph is updated and shared every three steps.

10. How many lines of code did you write for your software?
A: We have 7885 lines of code, 5504 written in Jason and 2381 written in Java.

D Strategies, Details and Statistics

1. What is the main strategy of your team?
A: We conceived our system strategy in two main phases: exploration, in which

the explorers identify all vertices and nodes in the map and the best zones,
and exploitation, where all agents try to conquest and defend these zones.

2. How does the overall team work together? (coordination, information shar-
ing, ...)

A: Our agents exchange information to coordinate their activities.
3. How do your agents analyse the topology of the map? And how do they

exploit their findings?
A: Some important information about the graph structure is shared and syn-

chronized in the blackboard and it is used by the agents to move through
the map. Despite this, agents do not use any information about topology to
make the decisions.

4. How do your agents communicate with the server?
A: We use the EISMASSim framework to communicate with the server. Exter-

nal actions and usual perception are used by the agents to interact with the
EISMASSim.

5. How do you implement the roles of the agents? Which strategies do the
different roles implement?

A: The implemented strategies for each agent type is shown in Table 1.
6. How do you find good zones? How do you estimate the value of zones?
A: The system uses a modified version of the BFS algorithm to find the best

zones in the map. It is run for all vertices, summing their values until some
depth. The vertex with the highest sum represents where the best zone is
(zone 1). After it, the algorithm tries to find the second best vertex to set
the second best zone (zone 2).

7. How do you conquer zones? How do you defend zones if attacked? Do you
attack zones?

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

63 Technical Report IfI-13-01

A: With the zones defined, each agent is informed about the central vertex of
its zone and how far they can travel inside it. The distance they can travel
is the shortest path, in number of edges, between the central vertex and
the target vertex. To defend these zones, the saboteurs attack all opponents
inside the zone or in nearby vertices. The other agents stay in a vertex that
has two neighbour vertices that belongs to our system. It is assumed that if
the enemy zone is not near, the opponent likely has a small zone and then
our agents do not try to attack it.

8. Can your agents change their behaviour during runtime? If so, what triggers
the changes?

A: If the opponent does not have any buying strategy, the Hulk agent changes
its behaviour and it stops buying upgrades. Besides it, in the start of the
match the saboteurs attack the enemies, but after some steps they change
their behaviour to attack the enemies.

9. What algorithm(s) do you use for agent path planning?
A: We used Dijkstra to path planning.
10. How do you make use of the buying-mechanism?
A: It was defined the minimum that the agents have to buy in order to make

the enemy expend its money. In particular, we have one agent (named Hulk)
that focus on buying and inducing all the opponents to also buy and spend
their money.

11. How important are achievements for your overall strategy?
A: The achievement points are quite important since they accumulate each step.

It is desirable to get the maximum of achievement points as soon as possible,
but some achievements are hard to get. For example, our system does not
surveys all edges and they do not inspect all opponents because it takes a
long time and it is better to keep the agents in the best vertices, getting
water wells score.

12. Do your agents have an explicit mental state?
A: The agents have their beliefs and use them to reason about their next action.
13. How do your agents communicate? And what do they communicate?
A: Our agents communicate indirectly by using the blackboard and directly by

message exchanging.
14. How do you organize your agents? Do you use e.g. hierarchies? Is your or-

ganization implicit or explicit?
A: There is an explicit pre-defined hierarchy to prevent redundant actions:

agents with higher priority decide before the others.
15. Is most of you agents’ behavior emergent on an individual or team level?
A: In our strategy both individual and group behaviour are important. The

individual behaviour is important when the agents are isolated in the map
trying to get achievement points. The group behaviour is responsible for
preventing redundant actions and conquering zones, for example.

16. If your agents perform some planning, how many steps do they plan ahead?
A: We do not use planning, all plans are previously programmed based on the

strategies.
17. If you have a perceive-think-act cycle, how is it synchronized with the server?

SMADAS-UFSC

DEPARTMENTOF INFORMATICS 64

A: We use the EISMAssim framework [4] to synchronize the agent actions to
the server.

E Conclusion

1. What have you learned from the participation in the contest?
A: We learned a lot about MAS developing and about the tools and languages

we used.
2. Which are the strong and weak points of the team?
A: Our strongest point is that we created several strategies for each system

feature and tested them against each other to select the more efficient ones.
Our weakness is that our system is not so offensive. Another problem is that
our agents does not focus on defending their own zone.

3. How suitable was the chosen programming language, methodology, tools,
and algorithms?

A: The Jason programming language was quite mature and suitable for the
agent programming. However, we still need tools for programming and de-
bugging at a higher level of abstraction.

4. What can be improved in the contest for next year?
A: We can improve our system both in the strategies and the tools. Our sys-

tem is focused only on the agent aspect and more global aspects should be
considered.

5. Why did your team perform as it did? Why did the other teams perform
better/worse than yours?

A: Our system performed well because we focused on extensively testing all
strategies.

6. Which other research fields might be interested in the Multi-Agent Program-
ming Contest?

A: We think that some parts of the problem can be solved by optimisation
techniques, which we plan to use in future versions of the systems.

7. How can the current scenario be optimized? How would those optimizations
pay off?

A: We propose two improvements. (i) Inform opponent’s score. It would allow
participants to design strategies based on the current match result, rising
more confrontations. (ii) Leave the graph less connected to increase the use
of edges.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

65 Technical Report IfI-13-01

Python-DTU

7 Python-DTU

Team Python-DTU from the Technical University of Denmark is a regular
contender of the Multi-Agent Programming Contest. For this edition it reg-
istered 6 members. As team’s name suggest, Python was the language of
choice. The agents follow a decentralized approach, where coordination
is achieved through distributed algorithms, e.g. for auction-based agree-
ment.

DEPARTMENTOF INFORMATICS 66

Reimplementing a Multi-Agent System in

Python

Jørgen Villadsen⋆, Andreas Schmidt Jensen, Mikko Berggren Ettienne,
Steen Vester, Kenneth Balsiger Andersen, and Andreas Frøsig

Department of Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads, Building 321, DK-2800 Kongens Lyngby, Denmark

Abstract. We provide a brief description of our Python-DTU system,
including the overall design, the tools and the algorithms that we used
in the Multi-Agent Programming Contest 2012, where the scenario was
called Agents on Mars like in 2011. Our solution is an improvement of
our Python-DTU system from last year. Our team ended in second place
after winning at least one match against every opponent and we only lost
to the winner of the tournament. We briefly describe our experiments
with the Moise organizational model. Finally we propose a few areas of
improvement, both with regards to our system and to the contest.

1 Introduction

This paper documents our work with the Python-DTU team which participated
in the Multi-Agent Programming Contest 2012 [7]. We also participated in the
contest in 2009 and 2010 as the Jason-DTU team [4, 5], where we used the Jason
platform [3], but this year we use just the programming language Python as we
did in 2011 [6]. See http://www.imm.dtu.dk/~jv/MAS for an overview of our
activities.

The scenario is based on the scenario from 2011 and has only been changed
in a few ways. The most interesting change is the increase in number of agents
from 10 to 20 agents per team.

Our focus for the 2012 version of the contest has been on reimplementing
the system from 2011. Given that the scenario is very similar to that last year,
we decided to look into ways of improving our system. We have been exploring
the possibility of implementing an organization for the system using the Moise
organizational model [1] as part of a two-student bachelor project.

The paper is organized as follows. In section 2 we discuss some of the ideas
we have pursued. In section 3 we describe some of the facilities we have added
in the improved system. Section 4 describes in detail our strategies and how the
agents commit to goals. Finally, we conclude our work by discussing possible
improvements of our system and the contest in section 5.

⋆ Corresponding author: jv@imm.dtu.dk

1

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

67 Technical Report IfI-13-01

2 System Analysis and Design

We chose to implement the system using Python as it is very fast and conve-
nient to implement experimental systems in this language. Other useful features
of Python are support of multiple programming paradigms, compact code and
dynamic typing. We did not use any multi-agent programming languages be-
cause we wanted to have complete control of everything in the implementation.
Last year we used Python 2 and we decided to upgrade to Python 3.

In order to make sure that our changes during the implementation phase
improved our system, all new algorithms and architecture changes were tested
against the older versions by comparing the data collected from the new statistics
to see if the change made any differences.

2.1 Testing Moise

This year we wanted to try to implement some kind of organization for our sys-
tem, so we made a substantial test implementation as part of a two-student bach-
elor project using the Moise organizational model [1]. We chose Moise because
we have previous experience using it in combination with the Jason platform [3].

The Moise organizational model [1] is a formalism for organizational multi-
agent systems where an organization is divided into three dimensions: struc-
tural, functional and deontic specification. The structural specification uses the
concepts of roles, role relations and groups to build the individual, social and
collective structural levels of an organization. Here, the roles an agent can enact
are defined, and it is furthermore defined how roles are linked, e.g. by allowing
agents enacting different roles to communicate. The collective level is specified
using the notion of groups, in which it is determined which roles are allowed to
be enacted and what links exists between agents both within internally in the
group and with external agents. The functional specification specifies missions
and plans using a so-called social scheme which is a goal decomposition tree
that has as root the goal of that scheme. The responsibilities for each subgoal
in a scheme are distributed in missions, which means that an agent choosing to
commit to a mission effectively chooses to commit to the goals of that mission.
The subgoals are created using the operators sequence, indicating that a goal
is fulfilled when the sequence of subgoals are fulfilled, choice, in which a goal is
fulfilled when a single subgoal is achieved, and parallelism, where all subgoals
must be fulfilled, but no specific order is required. The deontic specification is the
relation between the structural and functional specifications: it specifies on the
individual level the permissions and obligations of a role on a mission. It makes
it possible to specify that an agent enacting a certain role is obligated (or per-
mitted) to commit to certain missions, and is therefore obligated (or permitted)
to commit to the goals of that mission.

We follow the approach of S-Moise+, which is an open-source implementation
of an organizational middleware that follows the Moise-model [2]. Among other
things it consists of a special agent, the organizational manager, which maintains
consistency in the organization, i.e. by making sure that a single agent cannot

2

Python-DTU

DEPARTMENTOF INFORMATICS 68

enact two incompatible roles at the same time. This is done by letting the agents
communicate with the manager when they want to join a group, enact a role
or commit to a mission. If any such event is a violation of the organizational
specification, the organizational manager will not allow it.

The plan trees and social schemes of Moise have a large potential, due to the
fact that they will make sure that the right amount of agents will work together
toward the best goal. We have chosen to only plan for a single subgoal for each
agent, because of the very dynamic nature and the size of the map and number
of agents. This makes the plans sufficiently small for the agents to coordinate
themselves using direct communication, which makes the plan trees unnecessary.

It might be possible to split the agents into smaller groups to perform more
coordinated plans, like finding the opponent’s zones etc., but we did not have the
time to try to implement groups. In the end we decided not to use Moise as we
found that the benefits did not outweigh the needed effort to get the computation
under the time limit, due to the quite large communication overhead of the
organizational manager.

2.2 Agent behaviour

Our resulting system is a decentralized solution with a focus on time perfor-
mance. The communication between the agents relies on shared data structures
as this is a very fast way to communicate for the agents. The Runner class which
coordinates communication is described in more detail in section 3.3.

Instead of letting the agents find goals based on their own knowledge alone
they use the distributed knowledge of the entire team. This does add some
communication which in some cases is unnecessary but in most cases the extra
knowledge will produce better goals for the agents.

In each step each agent will find its preferred goals autonomously and assign
each of them a benefit based on its own desires (i.e. the type of agent), how
many steps are needed to reach the location and so on. In order to make sure
that multiple agents will not commit to the same goal they communicate in order
to find the most suitable agent for each goal. This is done using our auction-based
agreement algorithm which will be discussed in more detail in section 4.3.

The agents in this contest are situated in an inaccessible environment which
means that the world state can change without the agents noticing from step to
step, e.g. if the opponent’s agents move outside our agents’ visibility range. Hence
our agents should be very reactive to observable changes in the environment.

The agents are only proactive in a few situations. The most important one
being the communication between a disabled agent and a repairer. They use
their shared knowledge in order to decide which of the agents should take the
last step and who should stay, so that they eventually are standing on the same
vertex instead of simply switching positions. This is implemented by considering
the current energy for each agent.

Some of our agents also attempt to be proactive by for example parrying if
an opponent saboteur is on the same vertex. Furthermore, repairers will repair
wounded agents since they are likely to be attacked again.

3

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

69 Technical Report IfI-13-01

2.3 Random generation of the map

Last year all maps had one high-valued area, indicated by numbers on the ver-
tices, as seen in figure 1. For this setting we developed an algorithm which places
the agents in defensive positions inside the area in order to defend it. For more
information we refer to the paper about our system from 2011 [6].

Fig. 1. An example of a map in the MAPC 2011.

This year the map generation algorithm has been updated to create more
than one high-valued area. An example of this can be seen on figure 2, where the
size of a vertex represents its value. In some cases this lead to situations where
our agents would protect a single good area even though it would be better to
make smaller groups and have control over several areas. Therefore our previous
solution would only be effective in special cases, so we have implemented a

4

Python-DTU

DEPARTMENTOF INFORMATICS 70

new algorithm which takes multiple areas into consideration. The new solution
is actually much simpler and it works well for both maps with multiple areas
and maps with a single, high-valued area. In section 4.2 we describe the main
properties of this algorithm.

Fig. 2. An example of a map in the MAPC 2012.

3 Software Architecture

The software architecture, including the auction-based agreement approach, is
thoroughly described in the paper about our system from 2011 [6] and will only
be described briefly here. The rest of this section will describe a few minor
facilities added this year.

5

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

71 Technical Report IfI-13-01

3.1 Considerations

The competition is built on the Java MASSim-platform and EISMASSim frame-
work which makes it easy to implement a system quickly without spending time
on server communication and protocols. However, we did not utilize this frame-
work but chose to implement our system in Python exclusively to have better
control and complete knowledge about the implementation. Another solution
based on EISMASSim, ActiveMQ and the Java implementation of Python, called
Jython, was implemented as well. This solution was discarded due to perfor-
mance issues. We also considered using a multi-agent framework such as Jason,
but due to prior experiences, we thought that the benefits where outweighed by
the increased complexity and thus chose to implement our own framework. We
chose Python as we think it is in many ways superior with respect to development
speed and succinctness compared to Java, C#, C++ and other languages that
we have experience with. Furthermore Python supports multiple programming
paradigms, including the functional, which has quite effective for this setting.

Last year we used a decentralized solution where the agents shared their per-
cepts through a shared data structures but each kept their own copy of the graph
representing the environment. The increase in the number of agents and the size
of the maps for this year’s competition, forced us to rethink and reimplement
the percept sharing. To efficiently handle the increased amount of information,
all agents share a single instance of the graph. To avoid deadlocks, percepts that
lead to updates in this graph are handled with synchronized queues which allow
safe exchange of data between multiple threads.

3.2 Testing using flags

A lot of testing was required for verifying that our system was improved com-
pared to our previous system, so we needed an easy way to select which algo-
rithms to use. In order to be able to run several instances of the program, we
decided to create program arguments, or flags, for the system. In the beginning
we had a configuration file in which we set flags. This was not a very practical
way to do it as we had to have multiple configuration files in order to run more
instances of the program. These flags make it possible to specify which algo-
rithms the system should use. The help page for our multi-agent system where
the different flags are described is shown below:

$ python ./bagent.py -h

usage: bagent.py [-h] [-b] [-d] [-a] [-w] [-l] [-v {0,1,2}] {a,b,Python-DTU}

positional arguments:

{a,b,Python-DTU} agent name prefix

optional arguments:

-h, --help show this help message and exit

-b, --buy make the agents shop for upgrades

-d, --dummy dummy agents

6

Python-DTU

DEPARTMENTOF INFORMATICS 72

-a, --attack do attack

-w, --weak_opp attack EXP and INS in the start of the simulation

-l, --load_pickle load vertices from pickled data

-v {0,1,2}, --verbosity {0,1,2}

The flags are used to start multiple instances of the system using different
strategies. For example we can test whether it is better to use our buying strategy
by starting the server and then start two instances of the system where the flag
-b was passed to one of them. This was used to test whether it was beneficial to
use our heuristics, but as we found that this was not the case we have removed
them from the system.

3.3 Code structure and files

We briefly describe the main classes and files:

global vars.py: We have all our global variables in this file. They are mainly
used to make the implementation more dynamic and easier to maintain.

comm.py: This is the file where we have implemented the Agent class and the
procedures used to communicate with the server. The Communicator class
is implemented as processes such that all the agents can send and receive
messages at the same time. The logic of the agents are implemented in the
util.py and algorithms.py files.

bagent.py: This is where the main program is started and where the flags
are parsed. It is also in this file that our Runner class is implemented. The
Runner class starts and lets the agents do their calculations in a sequential
fashion.

algorithms.py: Most interesting of our algorithms are implemented in this file,
including:
– The greedy zone control which will be discussed in section 4.2.
– The get goals algorithm called by each agent. This algorithm is discussed

in more detail in the paper about our system from 2011 [6].
– The best-first search used by each agent in order to find specialized goals

according to their type.

util.py: We have implemented our graph representation of the map in this file.
The file also includes a timer which was used to find bottlenecks in our code.

4 Strategies, Details and Statistics

In the competition each step of each achievement is exponentially harder to
reach than the previous, thus our agents need a way to change their goals as
the simulation progresses. We describe our strategy for getting achievements in
section 4.1 and our zone control strategy in section 4.2. We describe how the
agents decide what to do in section 4.3 and finally how communication works in
section 4.4.

7

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

73 Technical Report IfI-13-01

4.1 Getting achievements

In the beginning every agent will work towards achieving as many type specific
goals as possible in a more or less disorganized fashion, e.g. the inspector will
inspect every opponent it sees.

We do this to achieve as many achievements as possible as fast as possible. We
tried implementing different heuristics to improve the first part of the strategy.
We considered the following heuristics:

Survey heuristic: The agents always survey the vertex with the most outgoing
edges if the steps needed to reach the vertex are the same (figure 3). The
idea is to get survey achievements faster, but it turned out that even though
we got the first few achievements faster, the last ones were achieved a lot
later using this heuristic, so we did not use it.

Probe heuristic: The agents probe the vertex with the highest valued neigh-
bours (figure 4). This worked very well in the scenario from 2011, but in
the 2012 scenario it can be more beneficial to first find a lot of potentially
high valued areas which can be probed later. This can be achieved using a
random walk, which will reduce the time in each area increasing the chance
that the agents might find more areas in less steps. We chose not to use the
probe heuristic since a random walk was more successful.

Attack vulnerable opponents: This heuristic is only applied in the first 80
steps (a simulation has 750 steps). We prefer to attack agents that cannot
parry, as this will get us more successful attacks. Furthermore, as added
value this will also lead to fewer successful parries for the opponent. This
turned out to give us a slight advantage in the beginning of the simulation,
so we chose to use it.

X3 4

Fig. 3. Illustration of the heuristic values our agents would get trying to survey, stand-
ing on the green vertex. The vertex to the left has a heuristic value of 3 because it has
three outgoing edges, whereas the one on the right has a slightly better heuristic value
of 4.

After a certain number of steps the agents will proceed to the zone control
part of our strategy. The sentinel is the only agent surveying after step 30. The
explorers keep probing until step 150 and will probe in our target area for the
next 50 steps to make sure we control as many vertices as possible. Afterwards

8

Python-DTU

DEPARTMENTOF INFORMATICS 74

5

66

56

4

4

5

6

5

Fig. 4. Illustration of the heuristic values our agents would get trying to probe, standing
on the green vertex where the blue ones are owned with the given value. The heuristic
value of the red vertices are calculated by taking the mean of the known neighbouring
vertices.

they will follow the zone control strategy. All other agents begin zone control
after step 150.

4.2 Zone control

The zone control part of our strategy uses a very simple, but surprisingly effec-
tive, greedy algorithm. The algorithm works by first choosing the node with the
highest value, and then by choosing a potential neighbour node. The potential
value of choosing that node is then calculated as the value of the node plus the
sum of all the neighbours which, according to the graph coloring algorithm [7],
will be owned if the potential node is chosen. For each agent, the algorithm will
choose the best node according to some parts of the graph coloring algorithm.
If a vertex has not been probed the algorithm will use the value 1. This way we
take some of the area coloring algorithm from the contest into consideration and
as it is an inaccessible environment this is the best we could achieve.

This algorithm will to some extent choose the optimal area or several areas
which are still fairly easy to maintain, even though our choices are limited by
our (partial) knowledge of the map and the missing parts of the area coloring
algorithm.

During the zone control part every type of agent has a specific job.

– Repairers and saboteurs do not directly participate in the zone control, in-
stead they are trying to defend and maintain the zone.

– Inspectors keep inspecting from their given expand node, because the oppo-
nents might have bought something which we need to make a counter move
against.

– Explorers will probe unprobed vertices within the target zone. When all
vertices are probed they are assigned a vertex by the zone control strategy.

– The sentinels will stay on a vertex assigned by the zone control strategy and
will parry if some of the opponent’s saboteurs move to the sentinels position.

9

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

75 Technical Report IfI-13-01

The last important change in the state of mind of the agents is that after step
150 the saboteurs start buying. They buy exactly enough extra health so that
they will not get disabled by a single attack from an opponent saboteur that has
not upgraded his strength. Furthermore we buy enough strength to disable any
opponent saboteur in a single attack by buying strength for all our saboteurs
every time we inspect the opponent saboteurs and find that it has more health
than all other inspected saboteurs. This buying strategy is chosen in hope of
dominating the map which will make it possible to gain control of the zone we
want. The advantage is that we only try to out-buy in one specific field, thus
we are unlikely to use all our achievement points. As this is a quite aggressive
buying strategy we had to wait to step 150 to have enough achievement points
to execute it.

4.3 Making decisions

The agents need a consistent way of figuring out what to do. We do this by
letting every agent find the nearest goals according to their type. They do this
by using a modified best-first search (BFS) which returns a set of goals. To make
sure that every agent always has at least one goal the BFS returns as many goals
as we have agents. This is a very agent-centered procedure meaning the agents
simply commit to the goal with the highest benefit, instead of coordinating any
bigger schemes. However, since the goals are more or less dependent on each
other there is some implicit coordination. For example the repairers will often
follow the saboteurs as these search for opponents and thus more often will share
a vertex with an opponent saboteur and get disabled.

To decide which goal to pursue the agents use an auction algorithm. Every
agent can bid on the goals they want to commit to and will eventually be assigned
the one they are best suited for. This results in a good solution, which however
might not be optimal. For further details we refer to the paper about our system
from 2011 [6].

Even though our planner calculates a few turns ahead the agents recalculate
every turn. We do this to adapt to newly discovered obstacles and facts, such
as an opponent saboteur or the fact that the agent has been disabled. The
agents will not end up walking back and forth as their previous goal will now
be one step closer, thus the benefit of the goal has increased. If another goal
becomes more valuable it means that it is a better goal than the one the agent
was pursuing, thus changing the commitment makes sense, so we do not lose
anything on recalculating each turn.

4.4 Communication

Communication and sharing of information is extremely important in any multi-
agent system. In our system every percept received by the agents are stored in a
shared data structure so that all agents have access to the complete distributed
knowledge of the team at all times.

10

Python-DTU

DEPARTMENTOF INFORMATICS 76

Actual communication in our system only happens when the agents are de-
ciding what to do. When they are figuring out what to do the auction-based
agreement algorithm is used on conflicting goals and thus two agents will never
pursue the same goal.

5 Conclusion

In the process of reimplementing and improving the Python-DTU multi-agent
system we have analysed the changes to the competition and used our findings
to design and implement better algorithms for the increasingly complex tasks.
We have considered imposing an explicit organization upon the agents, and for
this purpuse we experimented with the Moise organizational model. While it
had some advantages, such as the being able to ensure that the right amount of
agents work together toward a certain goal using by use of roles and plan trees,
we decided not to use Moise in the final version of our system, as its benefits did
not outweigh the communication overhead caused by the organizational manager
in the organizational middleware, S-moise+.

All improvements to the algorithms are quite simple, but are nevertheless ef-
fective at reaching their goals. The simplicity and specialized approach is proba-
bly one of our strengths, as it makes it easy to implement special cases when cer-
tain improvements of the algorithms were necessary. Having aggressive saboteurs
was also an advantage as it lead to the opponents being disabled often, which in
turn gave us a larger zone score. Our greatest weakness was that our uncompro-
mising attempt to have the strongest saboteurs could be countered by buying
enough health on a single saboteur to make us use most of our achievement
points for improving all of our saboteurs. This could lead to a large difference in
step score gained from achievement points each step.

The many advanced programming constructs in Python, e.g. lambda func-
tions, list comprehensions and filters made it possible to implement algorithms
very efficiently.

One thing we have noticed during the competition is that it does not seem to
pay off to buy anything other than health and strength. This meant that a lot
of teams had more or less the same strategies. We think it could be interesting
if many kinds of strategies could be sufficiently effective so that we might see
the teams following different strategies. One idea could be to introduce ranged
attacks which could be achievable through upgrades and should be limited by
visibility range. This could allow for some other strategies, since the agents need
to figure out where to hit the opponent a few steps in the future and how to avoid
getting hit themselves. Furthermore, the teams will need to use their inspectors
even more to find out whether or not to avoid possible ranged attacks from the
opponent.

11

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

77 Technical Report IfI-13-01

References

1. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Bossier. A Model for the
Structural, Functional, and Deontic Specication of Organizations in Multiagent Sys-
tems. In Guilherme Bittencourt, and Geber Ramalho (Eds.): SBIA ’02, LNCS 2507,
118-128, Springer 2002.

2. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Bossier. S-moise+: A Mid-
dleware for Developing Organised Multi-Agent Systems. In Bossier et. al. (Eds.):
COIN 2005, LNIA 3913, 64-78, Springer 2006.

3. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming Multi-
Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

4. Niklas Skamriis Boss, Andreas Schmidt Jensen, and Jørgen Villadsen. Building
Multi-Agent Systems Using Jason. Annals of Mathematics and Artificial Intelli-
gence, 59: 373-388, Springer 2010.

5. Steen Vester, Niklas Skamriis Boss, Andreas Schmidt Jensen, and Jørgen Villadsen.
Improving Multi-Agent Systems Using Jason. Annals of Mathematics and Artificial
Intelligence, 61: 297-307, Springer 2011.

6. Mikko Berggren Ettienne, Steen Vester, and Jørgen Villadsen. Implementing a
Multi-Agent System in Python with an Auction-Based Agreement Approach. In
Louise A. Dennis, Olivier Boissier, and Rafael H. Bordini (Eds.): ProMAS 2011,
LNCS 7217, 185-196, Springer 2012.

7. Tristan Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and Jomi
Hübner. Multi-Agent Programming Contest — Scenario Description — 2012 Edi-
tion. Available online: http://www.multiagentcontest.org/, 2012.

12

Python-DTU

DEPARTMENTOF INFORMATICS 78

Short Answers

A Introduction

1. What was the motivation to participate in the contest?
A: We find the contest very interesting for both research and teaching, cf. http:

//www.imm.dtu.dk/~jv/MAS for an overview of our activities.
2. What is the (brief) history of the team? (MAS course project, thesis evalu-

ation, . . .)
A: The team consists of both researchers/students from previous years and

students taking a variant of the course 02295 Advanced Topics in Computer
Science.

3. What is the name of your team?
A: The name of our team is Python-DTU where DTU is the short for the

Technical University of Denmark. We started as the Jason-DTU team a few
years ago.

4. How many developers and designers did you have? At what level of education
are your team members?

A: We are 6 computer scientists: associate professor Jørgen Villadsen (PhD),
Andreas Schmidt Jensen (PhD student), Mikko Berggren Ettienne (MSc stu-
dent), Steen Vester (MSc student), Kenneth Balsiger Andersen (BSc student)
and Andreas Frøsig (BSc student)

5. From which field of research do you come from? Which work is related?
A: Our field of research is AI with an emphasis on algorithms and logic (our

section is called Algolog).

B System Analysis and Design

1. Did you use multi-agent programming languages? Please justify your answer.
A: No, we used plain Python.
2. If some multi-agent system methodology such as Prometheus, O-MaSE, or

Tropos was used, how did you use it? If you did not, please justify.
A: We did not use any specific multi-agent system methodology, since we wanted

to take a more direct and simple approach.
3. Is the solution based on the centralisation of coordination/information on a

specific agent? Conversely if you plan a decentralised solution, which strategy
do you plan to use?

A: We use an agent-centered system in which each agent first calculates their
own goals, then they bid on the different goals and finally they use an auction
algorithm to figure out which goals to pursue.

4. What is the communication strategy and how complex is it?
A: The communication strategy is very simple. The agents only talk to each

other at the auction, and they share data using global data structures.
5. How are the following agent features considered/implemented: autonomy,

proactiveness, reactiveness?

13

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

79 Technical Report IfI-13-01

A: We have implemented the features as follows:
– We have some degree of autonomy as each agent finds his own goals, but

not complete autonomy as the goals are distributed using an auction
algorithm.

– The agents are proactive in certain situations. For instance, some of our
agents will parry if a saboteur is located at the same node as the agent,
and we also repair wounded agents since they will probably be attacked
again later.

– The agents are situated in an inaccessible environment, so we have chosen
that our agents recalculate their goals at each turn and take new percepts
into consideration, thus we have a high degree of reactiveness.

6. Is the team a truly multi-agent system or rather a centralised system in
disguise?

A: The agents have direct access to a common dataset, so one could argue that
it is a centralised system in disguise, but actually the agents themselves are
communicating in order to figure out what to do. Furthermore, since all the
agents find goals and decide which to pursue, the team is a true multi-agent
system.

7. How much time (person hours) have you invested (approximately) for im-
plementing your team?

A: We initially expected that we would have to invest approximately 200 man
hours, but when the tournament started we had invested approximately 300
man hours.

8. Did you discuss the design and strategies of your agent team with other
developers? To which extent did you test your agents playing with other
teams?

A: We did not discuss strategies with other teams, but we used the test matches
as an attempt to lure any good strategies.

C Software Architecture

1. Which programming language did you use to implement the multi-agent
system?

A: Python 3.
2. How have you mapped the designed architecture (both multi-agent and in-

dividual agent architectures) to programming codes, i.e., how did you im-
plement specific agent-oriented concepts and designed artifacts using the
programming language?

A: Since we used plain Python there was no obvious relation between agent
architecture in the design phase and the programming code. We used classes
to represent agents.

3. Which development platforms and tools are used? How much time did you
invest in learning those?

A: We have used Mercurial to version control our code and gedit and vim to
implement the code. We have not used any time learning this as we had
already used it before.

14

Python-DTU

DEPARTMENTOF INFORMATICS 80

4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java, . . .)
are used? How much time did you invest in learning those?

A: We have only used Python with a few special packages for argument parsing
etc.

5. What features were missing in your language choice that would have facili-
tated your development task?

A: Some sort of precompiling for debugging purposes could have speeded up
the implementation.

6. Which algorithms are used/implemented?
A: We have implemented the following algorithms:

– Auction house
– Best-first search
– Greedy zone control area algorithm

7. How did you distribute the agents on several machines? And if you did not
please justify why.

A: We used processes to allow the implementation to use all cores of the ma-
chine, which boosted the performance. We did not need several machines,
since this was adequate for fulfilling the time limit criteria.

8. To which extent is the reasoning of your agents synchronized with the receive-
percepts/send-action cycle?

A: The agents synchronize every time they have handled all percepts and as
they start the auction house algorithm.

9. What part of the development was most difficult/complex? What kind of
problems have you found and how are they solved?

A: Developing heuristics for different tasks proved to be quite hard. We used a
lot of time on testing different implementations against each other to solve
this.

10. How many lines of code did you write for your software?
A: We have written 1438 lines of code in Python including blank lines. This

count includes various test functionalities.

D Strategies, Details and Statistics

1. What is the main strategy of your team?
A: The main strategy of our team is split into three parts. First we want to

get as many random achievements as possible, then at step 30 we partially
tries to take control of a high valued area, while explorers keep on probing
more or less randomly. Finally, as we reach step 200 every agent is focused
on expanding.

2. How does the overall team work together? (coordination, information shar-
ing, ...)

A: All percepts are shared in a global datastructure and the goals are found
individually by each agent, and if they conflict with any of the other agents
goals then the auction algorithm is used.

3. How do your agents analyze the topology of the map? And how do they
exploit their findings?

15

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

81 Technical Report IfI-13-01

A: We simply save the map as a graph of vertices with a set of neighbouring
vertices. The percepts are stored in a shared data structure including op-
ponents specifications, types etc. Every time an agent perceives something
from the environment, it will update the shared data structures.

4. How do your agents communicate with the server?
A: We communicate through a socket, where we handle strings of XML received

from and sent to the server.
5. How do you implement the roles of the agents? Which strategies do the

different roles implement?
A: Each agent has a tag telling what type it is, and the goals they create depend

on this tag.
6. How do you find good zones? How do you estimate the value of zones?
A: Using a greedy algorithm considering common neighbours combined with

the graph coloring algorithm used by the server.
7. How do you conquer zones? How do you defend zones if attacked? Do you

attack zones?
A: We choose a zone to conquer judged by the sum of the values of the vertices

in the zone. We have a greedy algorithm that takes most of the vertices
we are going to own into account. Our saboteurs defend a zone by attacking
opponents near it. If no opponents are near, the saboteurs will move towards
a location where we last spotted an enemy in hope of finding some opponents
and attack their zone.

8. Can your agents change their behavior during runtime? If so, what triggers
the changes?

A: They change as described in our strategy which is a hard coded number of
steps.

9. What algorithm(s) do you use for agent path planning?
A: We use a best-first search algorithm to decide which goals to commit to.
10. How do you make use of the buying-mechanism?
A: We make sure that our Saboteurs are strong enough to disable opponent

saboteurs in a single attack by buying as much strength as they have health.
Besides this we buy a single health point in case the opponents do not buy
strength so that they cannot disable us in a single attack.

11. How important are achievements for your overall strategy?
A: Our entire strategy is build up around getting as many achievements as

possible, thus it is extremely important.
12. Do your agents have an explicit mental state?
A: They are very active until they start controlling a zone at which point they

go into a defensive state of mind.
13. How do your agents communicate? And what do they communicate?
A: Using a shared data structure in which they all percepts are shared with

every agent.
14. How do you organize your agents? Do you use e.g. hierarchies? Is your or-

ganization implicit or explicit?
A: We do not organize them explicitly, but as saboteurs often gets disabled the

repairers will follow and repair them. In the zone control part the agents will
often organize themselves, but only as this gives more zone points.

16

Python-DTU

DEPARTMENTOF INFORMATICS 82

15. Is most of you agents’ behavior emergent on an individual or team level?
A: The agents decide autonomously which goals they want to pursue, and use an

auction-based agreement algorithm to solve conflicting goals between agents
on the team level.

16. If your agents perform some planning, how many steps do they plan ahead?
A: We only plan as far as the 4 nearest goals for each agent and we recalculate

at each turn so we only plan a few steps ahead.
17. If you have a perceive-think-act cycle, how is it synchronized with the server?
A: For each turn we have a busy-wait until we have received the percepts and

we send as soon as we have an action.

E Conclusion

1. What have you learned from the participation in the contest?
A: We have learned to implement a multi-agent system and all that it includes.

We have been experimenting with a lot of algorithms and found that the
simple ones are often better as they are fast which are useful in a fast chang-
ing world. We also learned that small tweaks and fine tuning in a multi-agent
system really changes the behaviour and outcome a lot.

2. Which are the strong and weak points of the team?
A: Out team are very good at getting a lot of achievements very fast. We also

defend our area pretty good. Our downside is that we almost only consider
what we can see, this means that in some situations the opponent could have
a large area and we would just let them. We ended up loosing because the
opponents had a strategy to use as little achievement points as possible in
order to make us use them all. In the long run this made us lose even though
we had a better area. We never back down from a saboteur which in many
cases would be good, as their saboteur would be occupied and we would not
get disabled thus the repairer does not have to walk a long distance.

3. How suitable was the chosen programming language, methodology, tools,
and algorithms?

A: It was a pretty good programming language though you had to get used to
indent-based programming and no precompiling. It could have been inter-
esting to try a multi-agent programming language to really model a system.
In the end it seemed like our algorithms were quite effective even though
they were very simple.

4. What can be improved in the contest for next year?
A: We could implement some of the missing strategies discussed above, for

instance avoiding saboteurs or implementing a better attack strategy, e.g.
prioritizing opponents based on current health (by inspection). We could
also look into our buy strategies and adding an upper limit if needed.

5. Why did your team perform as it did? Why did the other teams perform
better/worse than yours?

A: Our strategy worked pretty well which we anticipated as we played quite
defensive. We lost because one of the opponents figured out our buying
algorithm in the test-phase and implemented a clever counter strategy.

17

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

83 Technical Report IfI-13-01

6. Which other research fields might be interested in the Multi-Agent Program-
ming Contest?

A: Algorithms, logic, game theory and AI.
7. How can the current scenario be optimized? How would those optimization

pay off?
A: It does not seem like it pays off to buy anything but health and strength. A

reasonable change could be making visibility range more useful by using it as
a parameter in the actions. For example this could mean that the saboteurs
would get ranged attacks or inspectors could inspect all opponents inside the
visibility range. This would ’force’ a lot of new strategies to come into play,
e.g. avoiding opponents artillery strikes etc.

18

Python-DTU

DEPARTMENTOF INFORMATICS 84

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

8 TUB

Team TUB, TU Berlin, Germany, is another regular contender of the Multi-
Agent Programming Contest, that presented for this edition as a single-developer
team. The agents are developed in the JIAC platform (whichwon the contest
several times in previous years).

85 Technical Report IfI-13-01

Multi-Agent Programming Contest 2012

TUB Team Description

Axel Heßler, Thomas Konnerth, Pawel Napierala, Benjamin Wiemann

Technische Universität Berlin, Germany

Abstract. We describe our contribution to the Multi-Agent Program-
ming Contest 2012, which has been developed by students and researchers
of the DAI-Labor at TU Berlin, Germany, using the JIAC V agent frame-
work and the agile JIAC methodology.

Introduction

Our team is called “TUB” and has participated consistently in the Multi-Agent
Programming Contest [1–3] since 2007. Since our first participation, we consider
the contest a very good opportunity to evaluate our platform and tools. The
current team has been developed in the course “Multi Agent Contest”1 by the
following students: Pawel Napierala and Benjamin Wiemann, supervised by the
following agent researchers: Thomas Konnerth and Axel Heßler (main contact).
We have invested 640 hours approximately to create the contest version of our
system and we are still not convinced that this version is competitive, although
we have invested twice the time of last year’s contribution.

System Analysis and Design

The methodology, which we have used during the course, borrows from the JIAC
methodology, and can be described as bottom-up and agile methodology: we
start with domain analysis, which is to build a first ontology : find the concepts
of the domain, their structure and relationships with each other: agents, own
team, opponents, nodes, edges, visited, probed, surveyed, weight.

As a second step the methodology says: make a role model and a user inter-
face (UI) prototype. A role is specified by a number of capabilities or behaviours
and the relationships with other roles. Identifying the roles was an easy task
because they are easily collected from the scenario document. We then assigned
simple and basic capabilities to the roles. As many of them were identical in each
role, we created the generalised role of the Mars invader, which is a collection
of the capabilities that all roles share, such as surveying, charging and moving.
All other roles inherit from the invader role and add special capabilities such as
probing, inspecting, and so on.

1 Project 0435 L 774 at TU Berlin, Germany

TUB

DEPARTMENTOF INFORMATICS 86

Fig. 1. TUB role model.

The role model was subject to many iterations. In Figure 1, an intermediate
version of the role model is shown that is very close to the final role model.
In principle, every contest agent in this role model could take every role (the
ContestAgentRole), but during this contest the roles are static properties given
by the contest server to every agent in the team. Common capabilities (goto,
survey, buy, recharge) are implemented to the DefaultDecisionBean component.
Special capabilities (probe, inspect, attack, repair) are implemented in the corre-
sponding role specific component (e.g. ExplorerDecisionBean or SaboteurDeci-
sionBean). Every agent instance has a specialization of the ServerCommunica-
tionBean component with the credentials for authentication. Finally, every agent
is instantiated once on the ContestNode, which provides the infrastructure for
acquaintance and inter-agent communication. The role model has been gener-
ated with the help of the AgentWorldEditor (AWE), which is part of the JIAC V
tool suite Toolipse. The AWE generates configurations for all agents and agent
nodes that are used by the JIAC V runtime at startup.

The UI prototype is a simple visualisation of the world graph. The problem
here is that we could not find a solution to draw the graph in a repetable way
during preparation. As a workaround we have patched the contest server to
send the coordinates that project the graph to a grid as used by the monitor
tool. The next step is implement ing the simple and basic behaviours and then
evaluating their function. After several iterations, when the basic actions can
be reliably achieved by the agent, more complex capabilities are added, such as
finding the most promising node to occupy or calculate the shortest or fastest
path to an arbitrary node, and so on. The system can be distributed over several

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

87 Technical Report IfI-13-01

machines if available, without changing any line of code, even at runtime. This
is one of the features of the JIAC agent framework [5] that is usually used for
MAS administration and self-administration [6, 7]. However, we could not use
this feature during the contest due to a lack of available hardware.

The agent system that runs our bots is mostly decentralised. As we use a
component framework to build our agents, the functionalities for the roles are
implemented within a dedicated component for each role. However, in order to
simplify configuration, we decided to equip all of our agents with all components.
The agents then decide based on the first message from the server, which role
they take and keep that role for the remainder of the match. This way, it was
very easy for us, to expand the team for the 2012 contest. All we had to do was
to add a number of additional agents, and they took their roles automatically.

During the match, the basic cycle of our agents was triggered by the percep-
tions from the server. Whenever an agent receives a new perception, it starts the
decision making cycle. In this cycle, the current state is evaluated and the agent
decides what to do, based on its role. This decision is then forwarded to all other
team members. Afterwards the agent waits for some time, in order to receive the
decisions from the other team members. Depending on circumstances, this may
lead to a reevaluation of the decision. Afterwards, the final decision is send to
the server.

The only centralized or hierarchical part of the team organization is the
zoning calculation. While this calculation can be performed by every agent, we
have instead decided to let only one agent calculate the Zoning and propagate the
results to all agents that participate in the zoning. This agent is selected among
and by interested agents that want to know where to position in the zone, using
a simple voting protocol. The result is then calculated by the selected agent and
shared with the other interested agents.

Regarding the communication strategy of our team, we follow our 2007 –
2009 successful approach (e.g. in [4]) to distribute all perceptions and intentions
among all other agents, where we could reach an appreciable enhancement of
the team performance. In theory this approach should not scale very well as the
number of perceptions and intentions sent around is 2n∗ (n− 1) per cycle. How-
ever, the JIAC V framework contains a messaging middleware that is capable
of processing multicast messages for groups of agents. With this approach, each
agent only needs to send one message that is then forwarded to all agents within
the group. Thus the framework can handle the message very easily.

When it comes to coordination aspects we distinguish between explicit and
implicit coordination. Implicit coordination can be achieved when the agents
share their intentions. This notion of intention is often misunderstood when
discussing the approach in the agent community. The intention in our case more
often reflects a perform or achievement goal than the action that the agent has
decided to execute. Taking the intentions of other agents into account, the actual
agent can adopt the intention when it has a better utility or even dismiss its own
decisions in case other agents will perform better. We have yet built only a few

TUB

DEPARTMENTOF INFORMATICS 88

explicit coordination strategies into our agents, e.g. the collaboration between
inspector and saboteur, or the unhealthy agent requesting the nearest repairer.

We have implemented general agent attributes such as autonomy, proactive-
ness and reactiveness as follows: JIAC V agents have their own thread of con-
trol and decide and act autonomously. We see the agents with low health level
proactively seeking the repairer’s help using a simple request, whereas probing
or surveying has been implemented as a simple reactive behaviour: if the node
is unprobed then probe.

Finally, our team was tested during the training matches that were organized
by before the tournament in order to ensure that the agents run stable and can
send their moves to the server within the allocated time.

Software Architecture

We have used the JIAC V agent framework to implement the contest MAS of our
TUB team. For our agent researchers the contest is always an excellent reliability
benchmarking of the framework, and also a test case for teaching principles of
agent programming. We used a set of dedicated JIAC V plugins for the Eclipse
IDE to create basic project structures and configurations. Then we added a
number of components that were already available form last years contest, such
as server communication and zone calculation functionalities. Finally, the biggest
part of the work was invested in implementing and tuning the algorithms that
control the actual actions of the agents. This was mostly done in Java, because
the decisions and calculations are time critical, and we wanted to avoid the
overhead from interpreting our declarative agent language.

As far as algorithms are concerned we experimented with Bellman-Ford and
Dijkstra path finding algorithms for the movement calculations. However, the
final team used a simple A-star algorithm, as other approaches proved to be
to costly. They may become useful again, if we delegate the path finding to a
dedicated agent that is not part of the team in future contests. Furthermore, the
algorithm described in the contest scenario was used for the calculation of the
zone scores.

Strategies, Details and Statistics

Every agents maintains its own world model (see Figure 2). Once the perception
arrives, unknown vertices are added to the graph, which represents the physical
world where the agents act in. Already known vertices are updated with the
values from the perception. The perception is also shared with all other agents
so that they can update their world model with information that is not visible
to them.

The world model also contains a number of agent lists, i.e. team bots, enemy
bots and special lists for interesting bots such as enemy’s saboteurs and enemy’s
repairers (to either destroy or avoid them depending on the role of our agent).

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

89 Technical Report IfI-13-01

Fig. 2. Domain model.

Furthermore, the world model is updated by a number of Zones that support
the decision process. The ownZones attribute is a list of zones that are held by
the own team, enemyZones are the enemy’s holdings as far as the own team can
see them. A safe and a semisafe area are also calculated to give the bots a map
of potential target vertices that are not reachable by enemy’s saboteurs. The
own saboteurs are more interested in the dangerous vertices because there are
the first class targets to be destroyed: enemy’s saboteurs.

The main strategy of our team is twofold: First, individual agents follows a
simple, straightforward achievement collection strategy based on their roles. The
behavior is as follows:

– Explorer: Explores the whole graph and if a node is not yet probed and
the agent is situated on the unprobed node then it will try to probe until
the probe action has been successfully achieved. If no probing is necessary,
but there are unsurveyed edges connected to the current node, the agent will
survey. Otherwise it will move to unprobed nodes.

– Repairer: If any agent is damaged and requires repairs, the repairer will
move to that agent and repair it. Other repairers are repaired with a higher
priority. If no repairs are necessary, the Repairer agents will participate in
zoning.

– Saboteur: If any agents of the opposing team are detected, the Saboteur
will try to catch them and attack them if possible. If no opposing agents are
detected, or all agents are disabled, the Saboteur will participate in zoning.
Furthermore, if enough achievement points are available, the saboteurs will

TUB

DEPARTMENTOF INFORMATICS 90

buy increases for their attack-power and health attributes.

– Sentinel: Our strategy does not contain any special tasks for Sentinels.
Therefore the Sentinels do always participate in the zoning.

– Inspector: The inspectors try to find agents of the opposing team and in-
spect them. This is mainly done to get the initial achievement points for
the first ten inspects. When all opposing agents have been inspected, the
Inspectors will stop inspecting and participate in zoning.

The second part of the strategy is an algorithm that we have called “zoning”,
i.e. two or more agents try to create and extend a zone in order to achieve the
maximum zone score gain. The basic algorithm is rather simple. First of all,
we determine which agents participate in the zoning. Then the current zone
score is calculated. This calculation happens under the premise that all non-
zoning moves are executed successfully but no other agent of our team or of the
opposing team moves. In the next step, we calculate the possible permutations
for this turn, i.e. what possible moves our zoning agents can make. As we only
consider agents that participate in zoning and each agent can only make one
step, the number of permutations is not extremely large and thus computable.
For each such permutation, we calculate the zone score that results after the
zoning agents have moved. Finally, we select the permutation with the best
overall score. Thus our agents perform a local optimization for their zone score
each turn.

While the initial implementation complexity and the computational cost of
this zoning algorithm were both acceptable, the performance of our zoning al-
gorithm within the contest was not very good. Obviously our agents miss the
opportunity to identify frontiers that award a high number of points, unless
these frontiers are already close to their current positions. This is likely the
most important point for improvements on our strategy in future contests.

However, we should also mention that for the actual selection of both, targets
for repairers and saboteurs, and for the zoning, we used greedy approaches. I.e.
our agents simply take the closest target that maximizes utility. Unfortunately
we could not find the time for the development of more elaborate strategies that
achieve a global optimum – be it the discovery of a good border, or the detection
of a high priority target for the saboteurs.

Conclusion

In summary, we are pleased withe the overall design and stability of our team.
The agents worked flawlessly, did not break down, and submitted their actions
in time to the server. However, the performance in terms of achieved scored is
not what we had hoped for. Our strategy is probably too simple, and we need to
improve the strategy for further contests. The most obvious points for this are

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

91 Technical Report IfI-13-01

the detection of globally optimal frontiers that our agents should occupy and a
general improvement of situational awareness for all agents.

However, even though we think that our own performance in the contests
could be improved, we wish to thank the organizers for the opportunity to test
our framework and our agents. We think that the contests is a valuable addition
to the multi agent community and hope that it will continue to be so for many
years to come.

References

1. Tristan M. Behrens, Mehdi Dastani, Jürgen Dix, Michael Köster, and Peter Novák.
The multi-agent programming contest from 2005-2010 - from gold collecting to
herding cows. Ann. Math. Artif. Intell., 59(3-4):277–311, 2010.

2. Tristan M. Behrens, Jürgen Dix, Jomi Hübner, and Michael Köster. Editorial. Ann.
Math. Artif. Intell., 61(4):257–260, 2011.

3. Tristan M. Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and
Jomi Fred Hübner. The multi-agent programming contest 2011: A résumé. In
Louise A. Dennis, Olivier Boissier, and Rafael H. Bordini, editors, ProMAS, volume
7217 of Lecture Notes in Computer Science, pages 155–172. Springer, 2011.

4. Axel Hessler, Tobias Küster, Oliver Niemann, Aldin Sljivar, and Amir Matallaoui.
Cows and Fences: JIAC V - AC09 Team Description. In Jürgen Dix, Michael Fisher,
and Peter Novák, editors, Proceedings of the 10th International Workshop on Com-
putational Logic in Multi-Agent Systems 2009, volume IfI-09-08 of IfI Technical
Report Series. Clausthal University of Technology, 2009.

5. Benjamin Hirsch, Thomas Konnerth, and Axel Heßler. Merging agents and services
— the JIAC agent platform. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah Seghrouchni, editors, Multi-Agent Programming: Languages, Tools
and Applications, pages 159–185. Springer, 2009.

6. Silvan Kaiser, Michael Burkhardt, and Jakob Tonn. Drag-and-drop migration: An
example of mapping user actions to agent infrastructures. In Wiebe van der Hoek,
Gal A. Kaminka, Yves Lespérance, Michael Luck, and Sandip Sen, editors, The
First International Workshop on Infrastructure and Tools for Multiagent Systems,
May 2010.

7. Alexander Thiele, Silvan Kaiser, Thomas Konnerth, and Benjamin Hirsch. MAMS
service framework. In SOCASE ’09: Proceedings of The Service-Oriented Comput-
ing: Agents, Semantics, and Engineering (SOCASE) Workshop, Lecture Notes in
Computer Science (LNCS). Springer, 2009.

TUB

DEPARTMENTOF INFORMATICS 92

Short Answers

A Introduction

1. What was the motivation to participate in the contest?
A: Our motivation was to employ and evaluate the JIAC V framework. Fur-

thermore we wanted to teach agent oriented principles to the students.
2. What is the (brief) history of the team? (MAS course project, thesis evalu-

ation, . . .)
A: The team was developed in a project course for bachelor students.
3. What is the name of your team?
A: The name of the team is “TUB”.
4. How many developers and designers did you have? At what level of education

are your team members?
A: We had 2 bachelor students working on the team who were supervised by to

agent researchers.
5. From which field of research do you come from? Which work is related?
A: We come from the field of Agent oriented technology.

B System Analysis and Design

1. Did you use multi-agent programming languages? Please justify your answer.
A: We did not use the multi-agent programming language JADL that comes

with the JIAC V framework, as we did not have enough time to train the
bachelor students in this language. Furthermore, we have made the experi-
ence, that most work on the contest requires work on the algorithms, rather
that work on “agent” problems such as coordination.

2. If some multi-agent system methodology such as Prometheus, O-MaSE, or
Tropos was used, how did you use it? If you did not, please justify.

A: We used the JIAC methodology.
3. Is the solution based on the centralisation of coordination/information on a

specific agent? Conversely if you plan a decentralised solution, which strategy
do you plan to use?

A: The solution is based on sharing all knowledge between all agents, thus
allowing them to come to identical solutions about the best course of action
while still having decentralized decisions. However, for the zoning calculation,
we use a centralized approach, as these calculations are rather expensive to
compute.

4. What is the communication strategy and how complex is it?
A: The communication works in two steps. In the first step, all agents share

their perceptions with all other agents via multicast messages. In the second
step, once an agent has committed to a course of action, it informs all other
agents about his actions. If actions collide (i.e. two agents try to probe the
same node), one of the agents (usually the one that was slower to publish
its intention) selects another action. Thus for each cycle we have one Multi-
cast message (n-1 individual messages) and one normal message per agent,
resulting in 2n*(n-1) messages for n agents.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

93 Technical Report IfI-13-01

5. How are the following agent features considered/implemented: autonomy,
proactiveness, reactiveness?

A: Each agent decides autonomously about its course of action. It reacts to the
actions of other agents and corrects its decisions if collisions occur.

6. Is the team a truly multi-agent system or rather a centralised system in
disguise?

A: As the agents make their decisions autonomously and do not rely on a central
instance for coordination, we regard it to be a true decentralized system.

7. How much time (person hours) have you invested (approximately) for im-
plementing your team?

A: We invested approximately 640 hours of work.
8. Did you discuss the design and strategies of your agent team with other

developers? To which extent did you test your agents playing with other
teams?

A: We tested our team in the training matches that were organized before the
actual tournament started.

C Software Architecture

1. Which programming language did you use to implement the multi-agent
system?

A: Our agents were implemented with the JIAC V framework which is Java
based.

2. How have you mapped the designed architecture (both multi-agent and in-
dividual agent architectures) to programming codes, i.e., how did you im-
plement specific agent-oriented concepts and designed artifacts using the
programming language?

A: For the communication and coordination of the agents, we used the appro-
priate JIAC V concepts. The individual functionalities for the roles of the
agents were implemented in dedicated components for each role.

3. Which development platforms and tools are used? How much time did you
invest in learning those?

A: Most of the work was done in Java with help of the Eclipse IDE. The Java im-
plementations relied on the JIAC V framework. It took the bachelor students
approximately two to three weeks to become familiar with this framework
(they were already familiar with Java and Eclipse).

4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java, . . .)
are used? How much time did you invest in learning those?

A: As a runtime platform we used JIAC V.
5. What features were missing in your language choice that would have facili-

tated your development task?
A: No features were missing.
6. Which algorithms are used/implemented?
A: We tried the Bellman-Ford and Dijkstra algorithms for path finding. The

final solution however was based on the A-star algorithm, as the other algo-
rithms proved to be to costly to be calculated by all agents.

TUB

DEPARTMENTOF INFORMATICS 94

7. How did you distribute the agents on several machines? And if you did not
please justify why.

A: We did not distributed our agents across different machines, as our one server
was more than capable to handle ten agents.

8. To which extent is the reasoning of your agents synchronized with the receive-
percepts/send-action cycle?

A: The decision making was triggered by the receiving of perceptions and was
finished before the timeout for each cycle.

9. What part of the development was most difficult/complex? What kind of
problems have you found and how are they solved?

A: The most complex problem of the contest for us was the balancing of repair-
and attack-actions. Furthermore the zoning algorithm for calculating the
optimal placement of the agents proved to be rather complex when opposing
agents were involved.

10. How many lines of code did you write for your software?
A: We did write approximately 8000 lines of code including comments.

D Strategies, Details and Statistics

1. What is the main strategy of your team?
A: Our agents try to optimize achievement and zoning points.
2. How does the overall team work together? (coordination, information shar-

ing, ...)
A: The agents share their perceptions and intentions.
3. How do your agents analyze the topology of the map? And how do they

exploit their findings?
A: The agents try to probe and survey all nodes and edges of the graph. The

results are propagated to all agents.
4. How do your agents communicate with the server?
A: We have implemented our own connection to the server and our own parser

for the perceptions.
5. How do you implement the roles of the agents? Which strategies do the

different roles implement?
A: Each role is implemented in a dedicated component for the agents which

is later configured into an agent. The explorers try to explore the whole
graph as fast as possible. The repairers try to keep all teammates alive. The
attackers try to disable the closest opposing agents. The inspectors make one
pass to inspect all opposing agents in order to get the achievement points.
All agents that have no role specific tasks left try to build a maximal zone.

6. How do you find good zones? How do you estimate the value of zones?
A: For our zoning algorithm, all agents that want to participate in a zone com-

municate this. Then the resulting zones for all possible moves of these agents
are calculated and the best zone is selected, resulting in the agents to exe-
cute the appropriate moves. The zone score is calculated based on the known
values of the nodes. Unknown nodes are valued with one point.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

95 Technical Report IfI-13-01

7. How do you conquer zones? How do you defend zones if attacked? Do you
attack zones?

A: We do not explicitly attack or defend zones. Our attackers simply attack the
closest opposing agents.

8. Can your agents change their behavior during runtime? If so, what triggers
the changes?

A: Explorers contribute to zoning when they have finished the exploration. Re-
pairers contribute to zoning if no teammate needs repairs. Attackers con-
tribute to zoning if all opponents are disabled. Inspectors contribute to zon-
ing of all opponents have been inspected. Repairers and Attackers may return
to their default behavior if it is applicable again.

9. What algorithm(s) do you use for agent path planning?
A: The final team uses the A-star algorithm.
10. How do you make use of the buying-mechanism?
A: The attackers buy attack-power and health.
11. How important are achievements for your overall strategy?
A: We try to maximize the earned achievement points.
12. Do your agents have an explicit mental state?
A: Each agent has a central fact based (based on Linda like tuple space). The

content of this fact base constitutes the mental state of the agent.
13. How do your agents communicate? And what do they communicate?
A: The agents communicate via messages that are equivalent to inform speechacts.

They communicate their perceptions and intentions.
14. How do you organize your agents? Do you use e.g. hierarchies? Is your or-

ganization implicit or explicit?
A: The organization of our agents is decentralized and role-based.
15. Is most of you agents’ behavior emergent on an individual or team level?
A: Individual behavior of the agents is programmed. Team based behavior is

emergent.
16. If your agents perform some planning, how many steps do they plan ahead?
A: Our agents do not plan ahead.
17. If you have a perceive-think-act cycle, how is it synchronized with the server?
A: The cycle waits until the perceptions from the server arrive. The the agents

try to calculate their actions as fast as possible and send them to the server
as soon as all decissions are finished.

E Conclusion

1. What have you learned from the participation in the contest?
A: We underestimated the potential of aggressive attackers. Furthermore, al-

gorithms with a high computational cost like the Dijkstra algorithm are
applicable, but are too costly if all agents calculate them at the same time.
This could be delegated to a specialized agent in future contests — the so
called path finder.

2. Which are the strong and weak points of the team?

TUB

DEPARTMENTOF INFORMATICS 96

A: Our zoning algorithm worked but was only doing local optimization. This
lead to a bad overall positioning for our team.

3. How suitable was the chosen programming language, methodology, tools,
and algorithms?

A: The development of our team worked fine.
4. What can be improved in the contest for next year?
A: The organization of the contest was very good. The scenario was also good.
5. Why did your team perform as it did? Why did the other teams perform

better/worse than yours?
A: Although we implemented two different teams during development for testing

purposes, we underestimated the effectiveness of aggressive play. During the
training matches we tried to improve our attackers, but were unable to make
them truly competitive with the winning team.

6. Which other research fields might be interested in the Multi-Agent Program-
ming Contest?

A: Game Theory, general Software Engineering, Coordination and Team orga-
nization, Self Organization

7. How can the current scenario be optimized? How would those optimization
pay off?

A: The balance of achievement points and aggressive play styles can be modified
in order to give the contest a different character. This is however not so much
of an optimization. It rather is a way to keep the contest interesting.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

97 Technical Report IfI-13-01

LTI-USP

9 LTI-USP

TeamLTI-USP fromUniversity of SaoPaulo, Brazil had three developers. Agents
were implemented using Jason, CArtAgO andMoise. There is one agent that
determines the best strategy, but each agent has its own thread, with its own
beliefs, desires and intentions. Agents broadcast new percepts, but commu-
nication load decreases over time.

DEPARTMENTOF INFORMATICS 98

LTI-USP Team : A JaCaMo based MAS for the

MAPC 2012

Mariana Ramos Franco, Luciano Menasce Rosset, Jaime Simão Sichman

Laboratório de Técnicas Inteligentes (LTI)
Escola Politécnica (EP)

Universidade de São Paulo (USP)
{mafranko, luciano.rosset}@usp.br, jaime.sichman@poli.usp.br

Abstract. This paper describes the architecture and core ideas of the
multi-agent system created by the LTI-USP team which participated
in the 2012 edition of the Multi-Agent Programming Contest (MAPC
2012). This is the second year of the Agents on Mars scenario, in which
the competitors must design a team of agents to find and occupy the best
zones of a weighted graph. The team was developed using the JaCaMo[1]
multi-agent framework and the main strategy was to divide the agents
into three subgroups: two in charge of occupying the best zones in the
map, and the other one in charge of sabotaging the opponents.

Keywords multi-agent system, multi-agent programming, JaCaMo, Ja-
son, Cartago, Moise

1 Introduction

The Multi-Agent Programming Contest (MAPC) is held every year in an at-
tempt to stimulate research in the field of programming Multi-Agent System
(MAS) [2]. This is the second year of the Agent on Mars scenario, in which the
competitors must design a team of 20 agents to explore and occupy the best
zones of Mars, represented by a graph with valued vertices and weighted edges.

The LTI-USP, located at the University of São Paulo is one of the most
relevant research groups in multi-agent systems in Brazil. The group participated
in the 2010 edition of the MAPC [3] and the previous Cows and Cowboys scenario
was used in the last two years of the Multi-Agent course held at the Department
of Computer Engineering and Digital Systems of the University of São Paulo.

For this year’s contest the LTI-USP team was formed by Mariana Ramos
Franco (M.Sc. Student) and Luciano Menasce Rosset (Undergraduate Student),
supervised by Prof. Jaime Simão Sichman (Professor). The M.Sc. student fully
developed the multi-agent system, while the undergraduate student helped with
the tests and gave some suggestions during the discussions about the adopted
strategy.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

99 Technical Report IfI-13-01

The main motivation to participate in the contest was to test and to analyze
the JaCaMo1 framework, in order to identify the weak and strong aspects of the
platform, and its performance limitations.

JaCaMo [1] is a platform for multi-agent programming which supports all
levels of abstractions – agent, environment, and organisation – that are required
for developing sophisticated multi-agent systems, by combining three separate
technologies: Jason2 [4], for programming autonomous agents; CArtAgO3 [5],
for programming environment artifacts; and Moise4 [6], for programming multi-
agent organisations.

2 System Analysis and Design

For the development of this project, as the main developer of the team had not
a lot of previous experience with any multi-agent methodologies, we preferred to
follow an iterative approach, which consisted in a cyclic process of prototyping,
testing, analyzing, and refining. In the testing phase, we run our team against
a previous version, and against the test teams provided in the contest software
package. Next, after fixing the observed implementation issues and performance
problems, we analyzed how effective the current strategy was and collected new
ideas to improve it.

The adopted solution is based on the centralization of coordination, that is,
one agent is responsible for determining which the best zone in the map is, and
then conduct the other agents to occupy this zone. The choice of centralized
coordination was made to allow the rapid development of the team, since our
principal motivation was to focus on the JaCaMo platform performance issues
and not on the coordination aspects.

In our team, each agent has its own view of the world, and they communicate
with each other for the following purposes: (i) informing the others agents about
the structure of the map; (ii) informing about the agent’s or the opponent’s
position, role and status; (iii) asking for a repair; (iv) asking an agent to go to
a determined vertex.

The agents’ communication occurs via the speech acts provided by Jason and,
to reduce the communication overhead, agents broadcast to all others only the
new percepts, i.e., only percepts received from the contest server which produces
an update on the agent’s world model are broadcasted. For this reason, there
is a strong exchange of information between the agents in the beginning of the
match due to the broadcast of new percepts, specially those related to the map,
such as vertices and edges. However, the communication overhead decreases as
the agents’ world model starts to be more complete.

The agent architecture is based on the BDI model. Each agent has its own
beliefs, desires, intentions and control thread. The agents are autonomous to

1 Available at http://jacamo.sourceforge.net/.
2 Available at http://jason.sourceforge.net/.
3 Available at http://cartago.sourceforge.net/.
4 Available at http://moise.sourceforge.net/.

LTI-USP

DEPARTMENTOF INFORMATICS 100

decide by themselves the next action to be performed, but in cooperation with
each other, particularly with the coordinator agent. The agents are proactive in
the sense that they pursue their selected intentions over time.

At each step, the agent decides which new plan will be executed to achieve
a determined goal given only the state of the environment and the results of
previous steps. There are no plans that last for more than one step and the
plan’s priority is determined by the order in which the plans were declared, i.e.,
the executed plan will be the first one to have its conditions satisfied. Some high
priority plans can be considered reactive, such as the one which tells the agent
to perform a recharge when running low on energy.

Approximately 300 man-hours were invested in the team development and,
before the tournament, we participated in some test matches set by the orga-
nizers to ensure the stability of our team. Only during the competition did we
discuss the design and strategies with the other participants.

3 Software Architecture

The prime requirement for this project was to create a MAS based on the Ja-

CaMo multi-agent framework, making use of the Moise organisational artifacts.
The architecture of the LTI-USP team is shown in Figure 1.

The agents are developed using the Jason MAS platform, which is a Java-
based interpreter for an extended version of the AgentSpeak programming lan-
guage for BDI agents [7]. Each agent is composed of plans, a belief base and its
own world model. The plans are specified in AgentSpeak and the agent decides
which plan will be executed according to its beliefs and the local view of the
world.

The world model consists of a graph developed in Java, using simple data
structures and classes. It captures every detail received from the MASSim con-
test server, such as: explored vertices and edges, opponents’ position, disabled
teammates, etc. At each step, the agent’s world model is updated with the per-
cepts received from the MASSim server, and with the information received from
the other agents. The agent can access or change the state of its world model
through the developed Jason Internal Actions. Some examples of internal ac-
tions are: jia.closer repairer(Pos), which returns to the agent the position
of the closest repairer; and jia.move to target(Pos,Target,NextPos), which
tells the agent what the next movement to be performed is to achieve a desired
position in the graph.

Some of the percepts received from the MASSim server are also stored in the
agent’s belief base, such as the agent’s role, energy, position and team’s money;
allowing the agent to have a direct access to these information without a call for
a Jason Internal Action. Percepts about vertices, edges and other agents were
not stored in the belief base so as not to compromise the agent’s performance,
as it could be very expensive to update and to access the belief base with so
much information. Moreover, since we wanted to update a belief when a new
instance was inserted (instead of adding a second one), we decided to use the

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

101 Technical Report IfI-13-01

Fig. 1. LTI-USP Team Architecture

IndexedBB class provided in the Jason package, a customized version of the
DefaultBeliefBase in which some beliefs are unique and indexed for faster
access.

Agents communicate with the MASSim server through the EISMASSim
environment-interface included in the contest software-package. EISMASSim is
based on EIS5 [8], which is a proposed standard for agent-environment inter-
action. It automatically establishes and maintains authenticated connections to
the server and abstracts the communication between the MASSim server and the
agents to simple Java-method-calls and call-backs. In order to use this interface,
we extended the JaCaMo default agent architecture to perceive and to act not
only on the CArtAgO artifacts, but also on the EIS environment as well.

5 Available at http://sourceforge.net/projects/apleis/.

LTI-USP

DEPARTMENTOF INFORMATICS 102

CArtAgO is a framework for environment programming based on the A&A
meta-model [9]. In CArtAgO, the environment can be designed as a dynamic
set of computational entities called artifacts, collected into workspaces, possibly
distributed among various nodes of a network [1]. Each artifact represents a
resource or a tool that agents can instantiate, share, use, and perceive at runtime.
For this project, we did not create any new artifact; we only made use of the
organisational artifacts provided in Moise.

Moise[6,10] is an organisational model for MAS based on three complemen-
tary dimensions: structural, functional and normative. The model enables a MAS
designer to explicitly specify its organisational constraints, and it can be also
used by the agents to reason about their organisation.

The Moise structural specification defines the roles played by the agents and
the groups they take part in. As shown in Figure 2, we defined seven roles
and four groups of agents for our team. Despite the five roles specified in the
contest scenario (explorer, inspector, repairer, saboteur and sentinel), we created
two other roles: coordinator and martian. The coordinator leads the other
agents to occupy the best zones of Mars, and he does not communicate with
the MASSim server. Martian is the default role adopted by the other agents in
the beginning of the application, while they do not receive from the server the
information about which role to play.

Fig. 2. Moise structural specification of the LTI-USP team.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

103 Technical Report IfI-13-01

The agents are divided into three subgroups: zone1, zone2 and sabotage.
The two first subgroups are responsible for finding and occupying the best zones
in the map, while the sabotage subgroup must attack the opponent’s best zone.
Each subgroup has a global goal associated to it.

The Moise functional specification is composed of a set of schemes. Each
scheme decomposes global goals into simpler goals and distributes them by as-
signing missions to the agents. It also specifies how these mission are related to
each other, i.e., if they should be achieved concurrently or in a certain sequence.
We have four schemes for our team, in which the global goals associated to them
are: coordinate, occupyZone1, occupyZone2 and sabotage. In Figure 3, these
global goals are represented as the root of the trees that represent the schemes,
and the leafs are goals which can be achieved by the agents. The label which
appears just above a goal represents the mission that the agent must be com-
mitted to in order to achieve the related goal. The missions are described in the
next section.

Fig. 3. Moise functional specification of the LTI-USP team.

The Moise normative specification links the structural and functional spec-
ifications by defining which role has the obligation or permission to commit to
each mission. The normative specification for the LTI-USP team is shown in
Table 1.

When the team starts, the coordinator agent creates the organisational
artifacts and adopts the coordinator role, while the other 20 agents connect
to the MASSim server and wait for the beginning of the simulation to known
what role to play. Despite the fact that the agent’s role is defined by their
identification/credentials, we assumed in our team that the agent will only be
aware of its role during the competition.

LTI-USP

DEPARTMENTOF INFORMATICS 104

Table 1. Moise normative specification of the LTI-USP team.

Role Mission Deontic Relation

explorer mExplore, mOccupyZone1 permission

explorer mOccupyZone2 obligation

repairer mRepairZone1, mRepairZone2 obligation

saboteur mSabotage, mOccupyZone1, mOccupyZone2 obligation

sentinel mSentinelSabotage, mOccupyZone1, mOccupyZone2 obligation

inspector mInspect, mOccupyZone1 permission

inspector mOccupyZone2 obligation

coordinator mCoordinate obligation

Once defined its role, the agent communicates with the coordinator, who
tells him which group to join and the missions to commit. We decided to make
the coordinator responsible for distributing the groups and missions among
the other agents, because by doing so we thus eliminate the performance issues
caused by two or more agents trying to adopt the same role in a group, or trying
to commit to the same mission. For example, in the beginning of the simulation,
as all agents perceive their roles at almost the same time, it is possible that all
four saboteurs try to join the sabotage group but, as shown in Figure 2, only
one saboteur is allowed in this group. In this case, three saboteurs will fail to join
the sabotage group and will have to try to join another one. In the tests before
the competition, we noticed that the organisational actions - such as adoptRole
and commitMission - are very costly, and the number of retries performed by
all the agents could be very high, causing some agents to loose some steps in
the beginning of the simulation. Even eliminating this “concurrency” problem,
we could observe during the competition that some agents still lost some steps
until finally succeeding to commit to a mission on the organisation.

Our team consists of, approximately, 2000 lines of code in Java and 1200 lines
in AgentSpeak, and the development was all carried on using the Eclipse IDE
with the Jason plugin. The main developer was already familiar with both the
development and the runtime platforms, i.e. ,the Eclipse IDE and the JaCaMo

framework.
The agents were not distributed across several machines due to time con-

straints, but is our intention to work in the future on a distributed team, since
this is supported by JaCaMo.

4 Strategies, Details and Statistics

The team strategy is a combination of the organisational strategy, the role de-
pendent strategies and the coordination strategy.

4.1 Organisational strategy

As previously explained, one of the team’s main strategy was to divide the agents
into three subgroups: two of them in charge of occupying the best zones in the

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

105 Technical Report IfI-13-01

map, and the other one in charge of sabotaging the opponents. Below we describe
the different missions related to each group.

– occupyZone1: Agents in this group have to occupy the best zone in the graph
following the directions provided by the coordinator agent. In addition, one
of the explorers works to probe the vertices of the graph to find the best
zones to be occupied. In the exploration, he fixes the priority to the vertices
belonging to the team’s zone. Furthermore, one inspector has the mission of
identifying the role of each agent in the opponent team. After the team has
knowledge of all the opponents’ role, the inspector joins the rest of the team
for the mission of occupying the best zone in the graph.

– occupyZone2: All the agents on this group have the exclusive mission of
occupying the second best zone in the graph, or to help the zone1 group to
form a larger area. Whether this group must join the other group or not is
determined by the coordinator.

– sabotage: This group is formed by one saboteur and one sentinel. The sabo-
teur’s mission is to attack the opponent who occupies a good vertex; and
the sentinel helps with the sabotage by moving inside the opponent’s zone.

4.2 Role-dependent strategies

The explorers probe every vertex and survey all edges on its path, while in-
spectors can perform an inspect action whenever an opponent is in a neighbor
vertex.

The priorities to run away, parry or attack, when an opponent is on the
same vertex, are set to each agent’s role. The saboteurs should always attack
any opponent agent in the same vertex. It should first target the saboteurs, then
repairers, and finally, the other opponents. The sentinels should always parry
in the presence of an opponents saboteur. The repairers will decide between
running away and parrying, in the presence of an opponent saboteur, depending,
respectively, on if there is another teammate in the same vertex or not. Inspectors
and explorers should always try to run away if an opponent saboteur is in the
same vertex.

Repairing a disabled or damaged agent may break the structure of the area
occupied. Having that in mind the repairers should stay put on their own vertices
and wait for damaged and disabled agents to come for repairs. The disabled or
damaged agent locates the closest repairer and heads to it, but if this repairer
already has three or more agents to be repaired, the damaged agent will proceed
to the second closest, and so on.

At each step, the team’s score is computed by summing up the values of
the zones and the current money. Thus the money obtained by the team has
a big impact on its score. For this reason, we decided to limit the buy action,
allowing the agents to purchase extension packs (such as battery, shield or
sabotageDevice) only when a defined amount of money is reached. Furthermore,
there is a specific buying strategy for each role. For example, the saboteurs can
buy sabotageDevices, while the other agents cannot buy it.

LTI-USP

DEPARTMENTOF INFORMATICS 106

4.3 Coordination strategy

The coordinator builds its local view of the world through the percepts broad-
casted by the other agents. Whenever the world model is updated, it computes
which the two best zones in the graph are. The best zone is obtained by calcu-
lating for each vertex the sum of its value with the value of all its direct and
second degree neighbors. The vertex with the greatest sum of values is the center
of the best zone. Zones with the sum of values below 10 are not considered in
the calculation. The same computation is performed again to determine if there
is a second best zone, but this time removing the vertices belonging to the first
best zone from the analysis.

If two best zones are found, the coordinator agent will designate one first best
zone for zone1 group, and the second best zone for the zone2 group. Otherwise,
the same zone will be assigned for the two groups.

Given that the coordinator has assigned a zone for a group, all agents of
the group are asked to occupy an empty vertex of the target zone. When all
the agents are in the best zone, the coordinator starts to look to the neighbor
vertices of the team’s zone in which an agent can move, trying to increase the
size of this zone.

5 Conclusion

Participating in the MAPC was a great opportunity to improve our knowledge
of several multi-agent technologies by implementing a robust MAS through the
JaCaMo framework. During the development, we had to deal with at least three
different MAS technologies: Jason, CArtAgO, and Moise.

The team was built focusing to test the integration of these different MAS
technologies, and not so much on the development of a better and decentralized
strategy. Despite that, we believe that the team performed fairly well, finishing
the competition in the fourth place.

Our greatest obstacle in the development of the team was to deal with the
performance issues related to the use of the organisational artifacts. In a time
limited context, as faced in this competition, the performance of a platform plays
an important role, and we believe that these performance requirements may be
a problem to the adoption of the JaCaMo in more real scenarios. Consequently,
as future work we intend to perform a complete evaluation of the JaCaMo per-
formance.

Besides these performance issues, the JaCaMo framework proved to be a very
complete platform for the development of sophisticated multi-agent systems, by
providing all the necessary features that we needed to developed our team.

Regarding possible extensions to the scenario, one idea is to change the score
computation to consider only the sum of the zones values. In this way, the buying
strategy will not impact directly the team score and it will be fairer to compare
different strategies.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

107 Technical Report IfI-13-01

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming (2011)

2. Behrens, T., Köster, M., Schlesinger, F., Dix, J., Hübner, J.: The Multi-agent Pro-
gramming Contest 2011: A Résumé. In Dennis, L., Boissier, O., Bordini, R., eds.:
Programming Multi-Agent Systems. Volume 7217 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2012) 155–172

3. Gouveia, G., Pereira, R., Sichman, J.: The USP Farmers herding team. Annals
of Mathematics and Artificial Intelligence 61 (2011) 369–383 10.1007/s10472-011-
9238-x.

4. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. (2007)

5. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2)
(June 2010) 158–192

6. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent or-
ganisations with organisational artifacts and agents. Autonomous Agents and
Multi-Agent Systems 20(3) (April 2009) 369–400

7. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: Proceedings of the 7th European workshop on Modelling autonomous agents
in a multi-agent world : agents breaking away: agents breaking away. MAAMAW
’96, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (1996) 42–55

8. Behrens, T.M., Dix, J., Hindriks, K.V.: The Environment Interface Standard for
Agent-Oriented Programming - Platform Integration Guide and Interface Imple-
mentation Guide. Department of Informatics, Clausthal University of Technology,
Technical Report IfI-09-10 (2009)

9. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3) (December 2008)
432–456

10. Hübner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering (2007) 1–27

LTI-USP

DEPARTMENTOF INFORMATICS 108

Short Answers

A Introduction

1. What was the motivation to participate in the contest?
A: The main motivation to participate in the contest was to test and to analyze

the JaCaMo framework, in order to identify the weak and strong aspects of
the platform, and its performance limitations.

2. What is the (brief) history of the team? (MAS course project, thesis evalu-
ation, . . .)

A: The group participated in the 2010 edition of the MAPC and the previous
Cows and Cowboys scenario was used in the last two years of the Multi-
Agent course held at the Department of Computer Engineering and Digital
Systems of the University of São Paulo.

3. What is the name of your team?
A: LTI-USP.
4. How many developers and designers did you have? At what level of education

are your team members?
A: The LTI-USP team was formed by Mariana Ramos Franco (M.Sc. Student)

and Luciano Menasce Rosset (Undergraduate Student), supervised by Jaime
Simão Sichman (Professor).

5. From which field of research do you come from? Which work is related?
A: The LTI-USP, located at the University of São Paulo is one of the most rel-

evant research groups in multi-agent systems in Brazil. In cooperation with
other research groups in DAS/UFSC (Brazil) and ISCOD/LSTI/ENSMSE
(France), our group is one of the responsibles for the development and main-
tenance of the Moise organisational model.

B System Analysis and Design

1. Did you use multi-agent programming languages? Please justify your answer.
A: We developed our team using the JaCaMo framework. JaCaMo is a plat-

form for multi-agent programming which supports all levels of abstractions
- agent, environment, and organisation - that are required for developing so-
phisticated multi-agent systems, by combining three separate technologies:
Jason, for programming autonomous agents; CArtAgO, for programming en-
vironment artifacts; and Moise, for programming multi-agent organisations.

2. If some multi-agent system methodology such as Prometheus, O-MaSE, or
Tropos was used, how did you use it? If you did not, please justify.

A: For the development of this project, as no member of the team had previous
experience with any multi-agent methodologies, we preferred to follow an
iterative approach, which consisted in a cyclic process of prototyping, testing,
analyzing, and refining.

3. Is the solution based on the centralisation of coordination/information on a
specific agent? Conversely if you plan a decentralised solution, which strategy
do you plan to use?

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

109 Technical Report IfI-13-01

A: The adopted solution is based on the centralization of coordination, that is,
one agent is responsible for determining which the best zone in the map is,
and then conduct the other agents to occupy this zone.

4. What is the communication strategy and how complex is it?

A: In our team, each agent has its own view of the world, and they commu-
nicate with each other for the following purposes: (i) informing the others
agents about the structure of the map; (ii) informing about the agent’s or
the opponent’s position, role and status; (iii) asking for repair; (iv) asking
an agent to go to a determined vertex.
The agents’ communication occurs via the speech acts provided by Jason
and, to reduce the communication overhead, an agent broadcasts to all the
other agents only the new percepts, i.e., only percepts received from the
contest server which produces an update on the agent’s world model are
broadcasted. For this reason, there is a strong exchange of information be-
tween the agents in the beginning of the match due to the broadcast of
new percepts, specially those related to the map, such as vertices and edges.
However, the communication overhead decreases as the agents’ world model
starts to be more complete.

5. How are the following agent features considered/implemented: autonomy,
proactiveness, reactiveness?

A: The agents are autonomous to decide by themselves the next action to be
performed, but in cooperation with each other, particularly with the coor-
dinator agent. The agents are proactive in the sense that they pursue their
selected intention over time.
At each step, the agent decides which plan will be executed given only the
state of the environment and the results of previous steps. The plan’s pri-
ority is determined by the order in which the plans were declared, and the
executed plan will be the first one to have its conditions satisfied. Some high
priority plans can be considered reactive, such as the one which tells the
agent to perform a recharge when running low on energy.

6. Is the team a truly multi-agent system or rather a centralised system in
disguise?

A: Our system is a true multi-agent system. Each agent has its own beliefs,
desires, intentions and control thread. Each agent decides by itself its next
action.

7. How much time (person hours) have you invested (approximately) for im-
plementing your team?

A: Approximately 300 man-hours were invested in the team development.

8. Did you discuss the design and strategies of your agent team with other
developers? To which extent did you test your agents playing with other
teams?

A: Only during the competition did we discuss the designs and strategies with
the other participants.

LTI-USP

DEPARTMENTOF INFORMATICS 110

C Software Architecture

1. Which programming language did you use to implement the multi-agent
system?

A: Java and AgentSpeak.

2. How have you mapped the designed architecture (both multi-agent and in-
dividual agent architectures) to programming codes, i.e., how did you im-
plement specific agent-oriented concepts and designed artifacts using the
programming language?

A: The agents are developed using the Jason MAS platform, which is a Java-
based interpreter for an extended version of the AgentSpeak programming
language for BDI agents. Each agent is composed of plans, a belief base and
its own world model. The plans are specified in AgentSpeak and the agent
decides which plan will be executed according to its beliefs and the local
view of the world. The world model consists of a graph developed in Java,
using simple data structures and classes.

3. Which development platforms and tools are used? How much time did you
invest in learning those?

A: All our code was written using the Eclipse IDE with the Jason plugin. All
members were familiar with Eclipse.

4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java, . . .)
are used? How much time did you invest in learning those?

A: We have used the JaCaMo platform to run our team. The main developer
was already familiar with JaCaMo.

5. What features were missing in your language choice that would have facili-
tated your development task?

A: The JaCaMo framework provided all the necessary features that we needed
to developed our team.

6. Which algorithms are used/implemented?

A: We used the breadth-first search algorithm to find the minimum path be-
tween two vertices in the graph.

7. How did you distribute the agents on several machines? And if you did not
please justify why.

A: We did not distribute the agents in several machines due to time constraints,
but is our intention to work after the tournament on a distributed team, since
the JaCaMo framework facilitates this.

8. To which extent is the reasoning of your agents synchronized with the receive-
percepts/send-action cycle?

A: At each step, the agent decides which action will be executed given only
the state of the environment and the results of previous steps. So the agent
reasoning is completely synchronized with the receive-percepts/send-action
cycle.

9. What part of the development was most difficult/complex? What kind of
problems have you found and how are they solved?

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

111 Technical Report IfI-13-01

A: Our greatest obstacle in the development of the team was to deal with the
performance issues related to the concurrent use of the organisational ar-
tifacts, and to solve it we decided to make the coordinator responsible for
distributing the groups and missions among the other agents.

10. How many lines of code did you write for your software?
A: Approximately 2000 lines in Java and 1200 lines in AgentSpeak.

D Strategies, Details and Statistics

1. What is the main strategy of your team?
A: The main strategy was to divide the agents into three subgroups: two in

charge of occupying the best zones in the map, and the other one in charge
of sabotaging the opponents.

2. How does the overall team work together? (coordination, information shar-
ing, ...)

A: One agent is responsible for determining which the best zone in the map is,
and then conduct the other agents to occupy this zone. Each agent has its
own world model, and only percepts received from the contest server which
produces an update on the agent’s world model are broadcasted.

3. How do your agents analyze the topology of the map? And how do they
exploit their findings?

A: The explorers probe all unknown vertex and the results of map analysis are
exploited to find the best zones to be occupied.

4. How do your agents communicate with the server?
A: Using the EISMASSim interface.
5. How do you implement the roles of the agents? Which strategies do the

different roles implement?
A: The explorers probe and survey every vertex in their path, while inspectors

can perform an inspect action whenever an opponent is in a neighbor vertex.
The priorities to run away, parry or attack, when an opponent is on the same
vertex, are set to each agent’s role. The saboteurs should always attack any
opponent agent in the same vertex. It should first target the saboteurs,
then repairers, and finally, the other opponents. The sentinels should always
parry in the presence of an opponents saboteur. The repairers will decide
between running away and parrying, in the presence of an opponent saboteur,
depending, respectively, on if there is another teammate in the same vertex
or not. Inspectors and explorers should always try to run away if an opponent
saboteur is in the same vertex.
Repairing a disabled or damaged agent may break the structure of the area
occupied. Having that in mind the repairers should stay put on their own
vertices and wait for damaged and disabled agents to come for repairs. The
disabled or damaged agent locates the closest repairer and heads to it, but if
this repairer already has three or more agents to be repaired, the damaged
agent will proceed to the second closest, and so on.

6. How do you find good zones? How do you estimate the value of zones?

LTI-USP

DEPARTMENTOF INFORMATICS 112

A: The best zone is obtained by calculating for each vertex the sum of its value
with the value of all its direct and second degree neighbors. The vertex with
the greatest sum of values is the center of the best zone. Zones with the sum
of values below 10 are not considered in the calculation.

7. How do you conquer zones? How do you defend zones if attacked? Do you
attack zones?

A: Given that the coordinator has assigned a zone for a group, all agents of the
group are asked to occupy an empty vertex of the target zone. When all the
agents are in the best zone, the coordinator starts to look to the neighbor
vertices of the team’s zone in which an agent can move, trying to increase
the size of this zone.
We have not implemented a defense strategy, and because that the team did
not perform well, trying to keep the conquest zone, when attacked.
We have developed a sabotage group to attack the opponents’zone.

8. Can your agents change their behavior during runtime? If so, what triggers
the changes?

A: Yes. In the beginning, one inspector has the mission of identifying the role
of each agent in the opponent team. After the team has knowledge of all the
opponents’ role, the inspector joins the rest of the team for the mission of
occupying the best zone in the graph.

9. What algorithm(s) do you use for agent path planning?
A: Breadth-first search algorithm.
10. How do you make use of the buying-mechanism?
A: We decided to limit the buy action, allowing the agents to purchase extension

packs (such as battery, shield or sabotageDevice) only when a defined amount
of money is reached. Furthermore, there is a specific buying strategy for each
role. For example, the saboteurs can buy sabotageDevices, while the other
agents cannot buy it.

11. How important are achievements for your overall strategy?
A: The achievements were very important in the team score, because of that

we limited the buy action.
12. Do your agents have an explicit mental state?
A: The agent’s mental state consists of internal beliefs, desires, intentions, and

plans.
13. How do your agents communicate? And what do they communicate?
A: The agents’ communication occurs via the speech acts provided by Jason.

They communicate with each other for the following purposes: (i) informing
the others agents about the structure of the map; (ii) informing about the
agent’s or the opponent’s position, role and status; (iii) asking for a repair;
(iv) asking an agent to go to a determined vertex.

14. How do you organize your agents? Do you use e.g. hierarchies? Is your or-
ganization implicit or explicit?

A: We used the Moise model to explicitly specify the organizational constraints
of our team. We organized our agents in three groups: two in charge of oc-
cupying the best zones in themap, and the other one in charge of sabotaging
the opponents.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

113 Technical Report IfI-13-01

15. Is most of you agents’ behavior emergent on an individual or team level?
A: Each agent acts individually and they are autonomous to decide by them-

selves the next action to be performed, but in cooperation with each other,
particularly with the coordinator agent.

16. If your agents perform some planning, how many steps do they plan ahead?
A: Our agents do not plan ahead. Plans are recalculated in each step.
17. If you have a perceive-think-act cycle, how is it synchronized with the server?
A: After send an action, the agent stay in wait until receive new percepts from

the server to start a new perceive-think-act cycle.

E Conclusion

1. What have you learned from the participation in the contest?
A: Participating in the MAPC was a great opportunity to improve our knowl-

edge of several multi-agent technologies by implementing a robust MAS
through the JaCaMo framework.

2. Which are the strong and weak points of the team?
A: We believe that the use of at least three different MAS technologies (Jason,

CArtAgO, and Moise) is the strong point of our team. The use of a central-
ized coordination and the weak strategy in keeping the team’s zones were
the negative points.

3. How suitable was the chosen programming language, methodology, tools,
and algorithms?

A: Besides the performance issues, the JaCaMo framework proved to be a very
complete platform for the development of sophisticated multi-agent systems,
by providing all the necessary features that we needed to developed our team.

4. What can be improved in the contest for next year?
A: Besides the test matches, the organization could leave a server running set

up with a dummy team, so that the participants could test the connection
and communication with the server at any time.

5. Why did your team perform as it did? Why did the other teams perform
better/worse than yours?

A: The team was built focusing to test the integration of these different MAS
technologies, and not so much on the development of a better and decentral-
ized strategy.

6. Which other research fields might be interested in the Multi-Agent Program-
ming Contest?

A: Algorithms, Game development, Game theory, AI, Robotics.
7. How can the current scenario be optimized? How would those optimization

pay off?
A: Regarding possible extensions to the scenario, one idea is to change the score

computation to consider only the sum of the zones values. In this way, the
buying strategy will not impact directly the team score and it will be fairer
to compare different strategies.

LTI-USP

DEPARTMENTOF INFORMATICS 114

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

10 AiWYX

TeamAiWYXwas a single-developer team fromSunYat-SenUniverity, China.
The agentswere developed inC++, using no agent-specific technologies. The
approach used is centralized, where one agent gets all the percepts from the
other agents andmakes the decisions for the whole team.

115 Technical Report IfI-13-01

Conquering Large Zones by Exploiting Task

Allocation and Graph-Theoretical Algorithms

Chengqian Li

Dept. of Computer Science,
Sun Yat-sen University

Guangzhou 510006, China
lichengq@mail2.sysu.edu.cn

Abstract. The Multi-Agent Programming Contest is to stimulate re-
search in the area of multi-agent systems. In 2012, for the first time, a
team from Sun Yat-sen University, Guangzhou, China, participated in
the contest. The team is called AiWYX, and consists of a single mem-
ber, who has just finished his undergraduate study. The system mainly
exploits three strategies: strengthening action preconditions, task alloca-
tion optimization, and surrounding larger zones with shorter boundaries.
With these strategies, our team is able to conquer large zones as early as
possible, optimize collaboration, and ensure efficiency. The system was
implemented in C++, and in this paper, we will introduce the design and
architecture of AiWYX, and discuss the algorithms and implementations
for these strategies.

Keywords: multi-agent system, distributing algorithm, task allocation
optimization

1 Introduction

The Multi-Agent Programming Contest (MAPC) [1, 2] is held annually, in order
for researchers to deepen the understanding about the cooperations and compe-
titions among rational agents and also develop some powerful strategies in such
environments. This year, for the first time, a team from Sun Yat-sen Univer-
sity, Guangzhou, China, participated in the contest. The team, called AiWYX,
reached the fifth place in the contest. It consists of only one member: the author
of this paper. I have just obtained my Bachelor degree and am now a PhD can-
didate. I am a member of the knowledge representation and reasoning group led
by Professor Yongmei Liu. My motivation in participating in this contest was to
gain experiences in designing multi-agent systems in order to facilitate my future
research in this area. These years I am actively involved in the ACM Interna-
tional Collegiate Programming Contest (ICPC, see http://icpc.baylor.edu).
Before this competition I had completed an undergraduate honors thesis on
Squirrel World, which was proposed by Hector Levesque as an adaptation of the
Monty Karel robot world written by Joseph Bergin and colleagues in Python
(see http://csis.pace.edu/~bergin/MontyKarel). In Squirrel World, squir-
rels need to move around on a two-dimensional grid and gather acorns. Squirrels

AiWYX

DEPARTMENTOF INFORMATICS 116

have both effectors (to do things in the world) and sensors (to gather informa-
tion). Everything is known to the squirrels at the outset except for the locations
of the acorns and some wall obstacles. The first squirrel or the first team of
squirrels who gathers a certain number of acorns wins the game. I have adopted
some of the strategies I developed for Squirrel World in the MAPC competition.

2 System Analysis and Design

I took part in the contest using the language C++, without using any multi-agent
programming languages. There are two reasons for this. Firstly, my background
is ACM/ICPC, so I am proficient in this language which is well-known for its
efficiency and I did not program in Java which is not so efficient. Secondly, I did
not have enough time to adapt myself to multi-agent programming languages.

We have exploited decentralization in implementing various strategies, how-
ever, the current implementation is restricted because we only deal with com-
mon knowledge [6]. When any agent’s knowledge state is updated, other agents’
knowledge state will be updated in precisely the same way, because of the as-
sumption of common knowledge. Furthermore, we assume that communications
between agents are perfect in this implementation. As to how to implement such
strategies on a computer, we apply for a piece of main memory from the oper-
ating system, which stores the common knowledge. Hence, each agent has the
same authority to access this memory space in order to communicate with other
agents.

While such a team of agents is running in the competition, all agents have the
goal that their team should reach a score higher than that of their rival. In any
state of the world, any agent knows exactly what she should do next to achieve
this goal and will start a new task immediately after completing one. In fact an
agent can attain her goal by herself or through collaboration with others. Given
a task, when there is only one agent intending to accomplish it, she will act by
herself. However, if there are more, all such agents will collaborate to accomplish
their task, that is, the task will be allocated to the agents in an optimal way.
Moreover, the agents here are aggressive, that is, they keep exploring new areas
of the world, never passively waiting for changes of the environment. Finally, in
any state of the world, any agent is able to perform some action to achieve the
goal, never lost in a dead-end.

To design and implement my system, I had spent about 250 hours. During
this period, I did not discuss the design and strategies of my agent team with
others, and I did not test my agents playing with other teams. I once tested my
program by myself on a single computer, that is, I started a competition between
two multi-agent teams, both of which were equipped with my own program. Both
of them randomly selected a strategy at the beginning, thus they usually exploit
different strategies, which helps me evaluate my team.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

117 Technical Report IfI-13-01

3 Software Architecture

I used C++ as the programming language, because it is so efficient and various
mature data structures and algorithms are easy to code in C++. Each of the
agents runs a separate program which is designed at four different levels, from the
decision level to the physical level, as is described in Fig.1. Level 1 is the decision

Decision Level Scheduling Level

Physical Level

Reasoning Level

Join a Group

Group Allocated Tasks

Ask about

the State

the Current State the Current State
Ask about

the State

Update and

Retrieve
Knowledge

Knowledge Base, Special Algorithms,

TCP/IP Protocol…

Fig. 1. Agent Model Diagram

level, which generates an action, or applies for joining a group, according to the
current state. Such a group are to accomplish a task which cannot be handled
by a single agent. For example, conquering a zone is a task, which cannot be ac-
complished by a single agent and need a group of them. If an action is generated,
the agent will herself perform it, otherwise she will join a group for coordinating
the task. If more than one agent applies for the same task, the first who applies
will become a manager responsible for coordinating this group of agents in an
optimal way. This manager agent produces the coordination in its program ar-
chitecture at Level 2 (scheduling level), so Level 2 is responsible for scheduling
and allocating tasks to each of them. Level 3 is responsible for manipulating and
visiting the knowledge base (KB). When a percept is received by an agent, Level
3 will automatically update the knowledge base. On the other hand when being
asked about the current state, it will retrieve specific information from the KB,

AiWYX

DEPARTMENTOF INFORMATICS 118

so we call it reasoning level. Level 4 (physical level) contains various physical
implementations, including KB, network communication (TCP/IP), and special
algorithms such as string processing, Dijkstra algorithm [4], breadth-first search
algorithm [3], minimum cost flow algorithm [8] and Hungarian algorithm [5, 7].

To develop my system, I used Gedit Text Editor in Linux system, together
with the g++ compiler. With the flexible C++ programming language, I was
able to implement all the features of my system quite efficiently, so no features
are lost in my implementation. Although I did not distribute the agents on differ-
ent machines when I participated in the contest, I am actually able to do so with
minor adjustments, that is, to modify the number of user names and passwords
in the initialization file. When agents are on the same machine, they commu-
nicate with each other by sharing main memory, otherwise they do so via the
TCP/IP protocol. In the receive-percept period, if an agent receives a new per-
cept, she will immediately perform reasoning to figure out her current state and
update her knowledge base. In the meantime any other agent will neither think
nor perform actions, until this update is completed. In the send-action period,
each agent reasons on her knowledge base to figure out her state, then reacts
according to our previously computed classification, before the action is sent to
the server. Furthermore a multi-thread TCP/IP sender will send the action to
the server. Note that our program is so efficient that any agent is always able to
send her action to the server before the next percept arrives. The most difficult
part of the whole development process was the optimization of team strategies.
That is, how to classify all the possible states and how to compute the optimal
action wrt each specific class. Roughly I solved these problems after a series of
observations, experiments, and comparisons. In classification, I considered roles,
injury, emergency, etc, and in the end, there were nearly 100 specific classes. For
example, suppose there is an agent who knows that her role is a repairer and
that she is neither injured nor in emergency, e.g., her energy value is too low.
And if there is an injured teammate in her location, she will retrieve all these
pieces of information from her knowledge base and consider all these factors to
compute which specific state she is in. And she will finally generate a reaction
to repair the injured. To design agents who react responsively and effectively, I
classified all possible states, and for each class, compute the optimal response
beforehand. In total, I wrote 10,000 lines of C++ code for my system.

4 Strategies, Details and Statistics

The main strategy of my agent system is that the whole team survey the edges
and probe the nodes of the whole map to search for available areas, and then
they try to occupy areas with higher values. If any minor event occurs, such as
encountering enemies or getting injured, the agent will abort her task. No matter
whether they are exploring a map or trying to occupy some area, the agents will
cooperate in an optimal manner, avoiding redundant work, so that they are able
to accomplish the task with the lowest cost.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

119 Technical Report IfI-13-01

4.1 Task Allocation

Given a set of tasks w[1, . . . , n] and the same number of agents a[1, . . . , n], an
arrangement can be denoted as a matrix Arn×n, where Ari,j = 1 if task wi is
allocated to agent aj , otherwise, Ari,j = 0. Here our strategy is that each of
the agents is allocated exactly one task, so in each of the rows and columns
of Ar, there is exactly one ‘1’. We use matrix Cn×n to denote the costs (the
number of steps or energy value an agent needs to accomplish a task), where
Ci,j denotes the cost needed for agent ai to complete task wj . Considering
all possible arrangements, we hope to find a minimal value v such that each
agent accomplishes her allocated task with costs no more than v. Let S be
the set of possible arrangements such that the maximum cost is minimal, and
let T be the elements in S such that the total cost is minimal. Algorithm 1,
as shown in the following, returns one element in T . It involves two procedures,
Maximum matching(Agents,Tasks,Edges) based on Hungarian algorithm [5, 7],
and Min cost flow(source, sink, Agents, Tasks, Edges, Cost) which is
just the one in [8]. Table 1 shows the test results of Algorithm 1. Each row
shows a specific type of 10 experiments, where the first three columns show the
number of agents, tasks and edges respectively. The fourth here shows the aver-
age number of edges whose value is not greater than v . The last column shows
the average running time.

We allocate each agent a unique task so that repetitive work is avoided so
that we are able to minimize the total cost. As mentioned earlier, when any agent
receives a new percept, any other agent will not perform any actions until this
percept is passed to all of them. This ensures that all agents share a synchronized
knowledge base based on the presumption of common knowledge. Each time an
agent arrives at an unexplored location, she surveys this location, obtaining all
adjacent nodes and the costs of respective edges. In this way, all locations ex-
plored form a connected component and the agents know all information about
this subgraph, including the shortest path between any two nodes in this com-
ponent. Their strategy now is to move to those nodes on the boundary, survey
them and then continue this process again and again. This will accelerate the
process of searching for more valuable areas. To avoid the case that two agents
move to the same location to survey, and to minimize the total cost, we use
Algorithm 1 to inform each agent where they should go. To communicate with
the server, we use a multi-threaded TCP/IP protocol.

I have designed a particular strategy for each of the five roles in the game.
When an agent realizes that she is acting in a certain role, say, repairer, she will
follow the respective strategy. Only explorers will accept the mission of exploring
the map and probing the value of the newly encountered node. After finishing
exploring, they will join a group to conquer a large zone. Here sentinels will join
a group to survey all the edges and after that, will join another group to conquer
a large zone just as what the explorers do. If some enemies are found and the
team does not know their roles and specific states, inspectors will join a group
to inspect those enemies, to collect such information. Otherwise, they will join
a group to survey all the edges and then join another group to conquer a large

AiWYX

DEPARTMENTOF INFORMATICS 120

input : Agents, Tasks, Cost

output: arrangements

// binary search

low← minx∈Agents,y∈Tasks Cost(x,y)− 1
high ← maxx∈agents,y∈Tasks Cost(x,y)

while low+1 ≤ high do

mid← ⌊
low+high

2
⌋

Edges← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ mid}
if Maximum matching(Agents,Tasks,Edges) == |Tasks| then
// Hungarian algorithm

high← mid

else
low← mid

end

end

Edge← {(x,y)|x ∈ Agents, y ∈ Tasks, Cost(x,y) ≤ high}
Edges← Edges ∪ {(source,x)|x ∈ Agents} ∪ {(x,sink)|x ∈ Tasks}
Cost(source,x)← 0// for all x ∈ Agents

Cost(x,sink)← 0// for all x ∈ Tasks

Min cost flow(source, sink, Agents, Tasks, Edges, Cost)

for (x,y) ∈ Edges do

if flow(x,y)==1 then

// flow is defined in Min cost flow

arrangements(x)← y

end

end

return arrangements

Algorithm 1: Min max cost tast allocation(agents,works,cost)

Table 1. Experimental results for Algorithm 1 (value of edge < 10000)

Agents Tasks Edges Remaining edges Time

20 300 3000 62 0.0039s
20 1000 10000 65 0.0088s
100 1000 50000 485 0.0571s
200 1000 100000 1243 0.1634s
500 1000 250000 3641 0.8317s
1000 1000 500000 8153 4.5360s

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

121 Technical Report IfI-13-01

zone just as what sentinels do. If some injured teammates are found, repairers
will run to them and repair them, otherwise, they will join a group to survey
the edges and then another group to conquer a large zone in the same way. If
some enemies are discovered, saboteurs will go to front line and fight with those
enemies, otherwise, they just do what sentinels do in the same occasion.

4.2 Expanding Zones

Expanding a boundary node B, means adding all adjacent nodes of B, which
are not occupied by the enemies, into the current zone. The agents first choose
each node which is not occupied by enemies as a point zone and then repeat the
following: find the boundary node P such that after expanding P the boundary
increases the least (possibly by a negative number), and then, expand it. During
the expanding process, we maintain the best zone found in the past, with the
highest value. We say a zone B1 is superior to another one B2 if B1 is more
valuable than B2. In details, we have the following Algorithm 2. The complexity
of this algorithm is O(N2M), where N is the number of nodes and M is the
number of edges in the graph. This is because the zone will only be expanded
at most N times and at each expanding, at most M edges will be traversed.
Table 2 shows the test results of Algorithm 2, where the first two columns show
the number of nodes and edges respectively, and the third column shows the
number of enemies, that is, the number of nodes occupied by enemies. The
last two columns show the average running time for centralized and distributed
algorithms respectively. Notice that in each type of experiments, the sum of
the running time over all the machines for the distributed algorithm, is several
times greater than the running time of the centralized algorithm, because in
the centralized algorithm, we apply the hashing technique to examine whether
a zone had already been computed before.

Note that Algorithm 2 can be made distributed, in that the expanding proce-
dure can simultaneously begin at any number of nodes on the map. In particular,
if we have as many machines as the nodes, we allocate each machine a unique
node and instruct it to run a separate expanding procedure with that node.

4.3 Strategy Details

Formally below is the evaluation function for estimating the value of a zone:

valueZone =
∑

i∈Zone

valuei. (1)

Our agents will calculate the most promising zone with Algorithm 2 and then
move to the boundary of that zone and conquer it. Among them, the sabo-
teurs always attack the nearest agent of the rival, so that this group of agents
always attack the nearest area occupied by the enemies. If they are attacked
by the enemies, they will recompute a new area not occupied by the enemies,
and then move there. All agents are equipped with exactly the same program,

AiWYX

DEPARTMENTOF INFORMATICS 122

input : Nodes, Edges, value, Enemy Nodes

output: Best Zone

for x ∈ Nodes do
Neighborx ← {y|(x,y) ∈ Edges}

end

Can Not Expand← {x|x ∈ Enemy Nodes or Enemy Nodes ∩ Neighborx 6= ∅}
// cannot be Expanded if an enemy is at or right beside

for i = 0 to p2 − 1 do

// p2 is a prime number, assumed 1000007

Hash Zonesi ← ∅
end

for start node ∈ Nodes do
Bound← {start node}
Zone← Bound

while ∃x.x ∈ Bound ∧ (Neighborx − Zone− Enemy Nodes 6= ∅) do
// there exists a non-enemy point right outside the boundary

if Bound ⊆ Can Not Expand then // no point can be Expanded
S← {x|minx∈Bound |Eat Nodesx|}
// the set of points needing the least agents if eating

T← {x|maxx∈S
∑

y∈Neighborx−Zone−Enemy Nodes valuey}

// set of nodes in S maximizing total cost

Zone← Zone ∪ {x|x ∈ Neighbory − Zone− Enemy Nodes ∧miny∈T y}

// Select any point in T, expand it

else
S← {x|minx∈Bound−Can Not Expand |Expand Nodesx|}

T← {x|maxx∈S
∑

y∈Neighborx−Zone valuey}

Zone← Zone ∪ {x|x ∈ Neighbory − Zone ∧miny∈T y}

// Select any point in T, expand it

end

Bound← {x ∈ Zone|Neighborx 6⊆ Zone}
if

∑
x∈Best Zone valuex <

∑
x∈Zone valuex then

Best Zone← Zone

end

hash← (
∑

xi∈Zone,0≤i<|Zone| xi × p
1i

) mod p2

// p1 and p2 are prime numbers, p1 is 1007 and p2 is 1000007

if Zone ∈ Hash Zoneshash then
break

end

Hash Zoneshash ← Hash Zoneshash ∪ Zone

end

end

return Best Zone

Algorithm 2: Expand(Nodes, Edges, value, Enemy Nodes)

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

123 Technical Report IfI-13-01

Table 2. Experimental results for Algorithm 2

Nodes Edges Enemies Time Time (distributed)

100 300 20 0.0207s 0.002s
200 600 20 0.2910s 0.006s
300 900 20 1.2581s 0.013s
400 1200 20 3.5527s 0.023s
500 1500 20 7.4012s 0.034s
1000 3000 20 > 30s 0.128s

however, at each step during the contest, the strategy can be changed with a
relatively small probability. Intuitively given an area, the safest strategy is to
fully cover its boundary, that is, each boundary node is occupied by an agent.
However, we sometimes take some risk, hoping to occupy more with the same
number of agents. One possible risky strategy is that there is at least an agent
at any two adjacent boundary nodes. At the start of the contest, we exploit such
risky strategy to conquer an area. If this area is often disturbed by enemies,
we will recompute a new area with the aforementioned safe strategy and then
move there. To summarize, two factors can trigger strategy changes: (1) whether
a conquered area is often disturbed; (2) a relatively small probability. During
the procedure of path finding, we exploit Dijkstra Algorithm and Breadth-First
Search Algorithm, and we also use Algorithm 1 to prevent any two agents from
exploring the same location. During the contest, there is a certain strategy that
only saboteurs will buy sabotage device and shield, and the strength value will
always be equal to the health value or one unit more. However, according to
empirical results, it is best not to buy any facilities. Considering that this does
not cause big problems, at the start we randomly make a choice between these
strategies. In the contest, we value achievements, from which we are able to ob-
tain some scores at each step, so we try to acquire achievements swiftly, never
spending them.

As mentioned earlier, all agents in our team are rational and good team play-
ers, that is, each will always try to complete the mission of the group. Moreover,
recall that all communications are perfect and all agents will not perform any
actions when a certain percept is being passed in the group. In our team all the
agents are armed with exactly the same program so that they have equal status.
When a list of agents are applying for the same mission, one of them will become
a temporary project manager, which is responsible for allocating the mission in
an optimal way. Later this project manager will become an ordinary agent and
each agent will accomplish her allocated mission separately. Hence we organize
our agents explicitly and no hierarchy is exploited. When an agent encounters
something emergent, she immediately interrupts her allocated mission and tell
all others in the group. The group will possibly relax the team mission so that
they are able to accomplish it without this agent. Agents are able to perform
planning in path finding and they need complete knowledge about the (local)
initial state. Here we do not call a planner, but exploit Dijkstra Algorithm to

AiWYX

DEPARTMENTOF INFORMATICS 124

obtain a shortest path from the source to the destination. To synchronize with
the server, the agents use multi-thread TCP/IP listeners to listen to the message
from the server, and decide what actions to perform accordingly. Furthermore,
a multi-thread TCP/IP sender will send the action to the server. Note that our
program is so efficient that any agent is always able to send her action to the
server before the next percept arrives.

5 Conclusion

The participation of this contest has greatly improved my knowledge of multi-
agent systems and stimulated my interest in conducting research in this area. I
have learnt some important strategies to improve the performance of my agent
team. Firstly, agents should be trained beforehand to strengthen the precon-
ditions of their actions in order to reduce the search space. For example, the
agents would realize that any node should not be surveyed repeatedly so they
strengthen the precondition of the survey action. Secondly, the agents should
record some optimal solutions in some cases, then with the learned experiences,
they will be able to make best responses in similar cases. For instance, if a sabo-
teur encounters an enemy for the first time, she deliberates over the optimal
strategy, attacks that enemy, and learns that experience. Then if similar cases
happen next time, she will simply behave according to this experience, with-
out deliberation. Thirdly, the agents should keep a balance between maximizing
their worst outcome and minimizing the best outcome of their enemies in the
meantime.

One strong point of our team is that we use Algorithm 1 for task allocation
to avoid repetitive work, hence decreasing cost of the team. Also, Algorithm 2
ensures that our agents are able to search for a large area, and then occupy it.
Another is that our team is efficient in that it only takes the team about 0.2
second to make all decisions, on the 300-edge and 800-node map, in a perfect net-
work. This enables us to develop more complex strategies in future contests. The
weaknesses of our team are that we do not have a good strategy for disturbing
the opponents and we are not able to defend our own area effectively. Because
there is a great number of agents and the map is complex, our programs have
to run with great efficiency. Hence we choose C++, which is known for its effi-
ciency and flexibility, supporting various data structures and algorithms. Next
year we are going to exploit effective strategies to attack enemies’ zone and pro-
tect our own zone. The performance this year is not so satisfactory and there
are many reasons: this was the first time for us to participate, the team con-
sisted of only one member, I have just finished my undergraduate study with
little research experience, and I had not enough time to implement all the ideas.
For the next year, some changes we would think beneficial include: (1) servers
should never send repetitive static information so as to relieve the pressure of
network communication; (2) a percept should contain no information about the
teammates because the agents should communicate with each other to broadcast
such information.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

125 Technical Report IfI-13-01

Acknowledgements

I thank Professor Yongmei Liu for introducing me to the Multi-Agent Program-
ming Contest. I am deeply grateful to Yi Fan for his generous and valuable
help with the writing of this paper. This project was supported by the Natural
Science Foundation of China under Grant No. 61073053.

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: Special issue about Multi-
Agent-Contest I. In: Annals of Mathematics and Artificial Intelligence. vol. 59.
Springer, Netherlands (2010)

2. Behrens, T., Dix, J., Köster, M., Hübner, J.: Special issue about Multi-Agent-
Contest II. In: Annals of Mathematics and Artificial Intelligence. vol. 61. Springer,
Netherlands (2011)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Section 22.2: Breadth-first
search. In: Introduction to Algorithms. pp. 531–539. MIT Press and McGraw-Hill
(2001)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische
Mathematik. vol. 1, pp. 260–271. Springer (1959)

5. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. of Res.
the Nat. Bureau of Standards 69 B, 125–130 (1965)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The
MIT Press, Cambridge, Massachusetts (1995)

7. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval
Res. Logist. Quart pp. 83–97 (1955)

8. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Operations
Research 41(2), 338–350 (1993)

AiWYX

DEPARTMENTOF INFORMATICS 126

Short Answers

A Introduction

1. What was the motivation to participate in the contest?
A: Our motivation was to gain deeper understanding about Multi-agent Sys-

tems.
2. What is the (brief) history of the team? (MAS course project, thesis evalu-

ation, . . .)
A: To test some strategies and then formalize them to gain a general method.
3. What is the name of your team?
A: My team name is AiWYX.
4. How many developers and designers did you have? At what level of education

are your team members?
A: Only one. Bachelor of Software Engineering.
5. From which field of research do you come from? Which work is related?
A: Knowledge representation. Game theories and distributing algorithms.

B System Analysis and Design

1. Did you use multi-agent programming languages? Please justify your answer.
A: No, I didn’t. Because of efficiency.
2. If some multi-agent system methodology such as Prometheus, O-MaSE, or

Tropos was used, how did you use it? If you did not, please justify.
A: No, I am so proficient in this language and it is also famous because of

efficiency.
3. Is the solution based on the centralisation of coordination/information on a

specific agent? Conversely if you plan a decentralised solution, which strategy
do you plan to use?

A: I have exploited decentralization in implementing various strategies, how-
ever, the implementation now is so restricted because we only deal with
common knowledge.

4. What is the communication strategy and how complex is it?
A: All agents share exactly the same knowledge at any time. No agents will

perform any action when a new percept is propagating. We apply for a piece
of main memory from the operating system to store their knowledge.

5. How are the following agent features considered/implemented: autonomy,
proactiveness, reactiveness?

A: In any state of the world, any agent is able to perform some actions to ap-
proach the goal, never lost in a dead-end. The agents here keep exploring
new area of the world, never passively waiting for changes of the environ-
ments. In any state of the world, any agent knows exactly what it should do
next to achieve this goal and it will invoke a new task after completing one.

6. Is the team a truly multi-agent system or rather a centralised system in
disguise?

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

127 Technical Report IfI-13-01

A: I have exploited decentralization in implementing various strategies, how-
ever, the implementation now is so restricted because we only deal with
common knowledge.

7. How much time (person hours) have you invested (approximately) for im-
plementing your team?

A: About 250 hours.
8. Did you discuss the design and strategies of your agent team with other

developers? To which extent did you test your agents playing with other
teams?

A: I am the only one in the team, however, my supervisor does provide some
key tips. I once tested my program on a single computer, that is, I started
a competition between two multi-agent teams, both of which were equipped
with my own program.

C Software Architecture

1. Which programming language did you use to implement the multi-agent
system?

A: C++
2. How have you mapped the designed architecture (both multi-agent and in-

dividual agent architectures) to programming codes, i.e., how did you im-
plement specific agent-oriented concepts and designed artifacts using the
programming language?

A: I mapped the designed architecture to several programming levels. At the
first level is the agent directly thinks on the overall strategy. The second
level is team work level that arrange the mission to every agent which join
the mission. The third level is for reasoning with the knowledge base. The
fourth level is responsible for various network communications and concrete
algorithms.

3. Which development platforms and tools are used? How much time did you
invest in learning those?

A: Just Gedit Text Editor. I didn’t invest any time in learning that.
4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java, . . .)

are used? How much time did you invest in learning those?
A: None. I didn’t invest any time in learning that.
5. What features were missing in your language choice that would have facili-

tated your development task?
A: I have implemented all proposed features efficiently, due to the flexibility of

this language.
6. Which algorithms are used/implemented?
A: Breadth-first search, Dijkstra algorithm, minimum cost flow algorithm and

Hungarian algorithm.
7. How did you distribute the agents on several machines? And if you did not

please justify why.
A: I am able to distribute the agents by changing initialization files but I did

not do so in the contest.

AiWYX

DEPARTMENTOF INFORMATICS 128

8. To which extent is the reasoning of your agents synchronized with the receive-
percepts/send-action cycle?

A: If an agent receives a new percept, any other agent will perform no actions
until this percept is passed to all agents in this group.

9. What part of the development was most difficult/complex? What kind of
problems have you found and how are they solved?

A: The most significant difficulty is how to make the best team strategies. By
strengthening action preconditions and training the agents so that they know
what should be best responses.

10. How many lines of code did you write for your software?
A: About 10,000 lines.

D Strategies, Details and Statistics

1. What is the main strategy of your team?
A: The whole team explores the whole map for available areas, and then they

tried to occupy areas with higher values. If any minor events occur, such
as encountering enemies or some teammates injured, they will abort this
task to deal with that. In both processes, the agents cooperate in a optimal
manner, so that they are able to accomplish the task with lower cost.

2. How does the overall team work together? (coordination, information shar-
ing, ...)

A: We allocate each agent a unique task. When any agent receives a new per-
cept, any other agent will not perform any actions until this percept is passed
to all of them. This ensures that all agents share a synchronized knowledge
base.

3. How do your agents analyze the topology of the map? And how do they
exploit their findings?

A: Each time an agent arrives at an unexplored location, it collects all informa-
tion about edges and nodes. Their strategy now is to move to those nodes on
the boundary, survey them and then continue this process again and again.

4. How do your agents communicate with the server?
A: We exploit multi-threaded TCP/IP protocol.
5. How do you implement the roles of the agents? Which strategies do the

different roles implement?
A: We have designed a particular strategy for each of the five roles in the game.

When an agent realizes that it is acting a certain role, say, repairer, it will
follow the respective strategy. Only explorers accept the mission of exploring
the map and probe the value of the newly encountered node. Only sentinels
and inspectors explorers will occupy the zones. Repairers will run to the
injured and repair their teammates while saboteurs will go to front line and
fight with enemies.

6. How do you find good zones? How do you estimate the value of zones?
A: First I will choose each node as a point zone with no enemies standing at and

then repeat the following: find the boundary node P s.t. after expanding P

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

129 Technical Report IfI-13-01

the boundary increases the least (possibly by a negative number), and then,
expand it. During the expanding process, we maintain the optimal zone ever
found. By the following:

valueZone =

∑
i∈Zone valuei

|agent number to occupy|
.

7. How do you conquer zones? How do you defend zones if attacked? Do you
attack zones?

A: Our agents will compute the most promising zone with Algorithm 2 and then
move to the boundary and conquer it. If some enemies attack them, they will
recompute a new area not occupied by the enemies, and then move there.
Among them the saboteurs will always attack the nearest area occupied by
the rival.

8. Can your agents change their behavior during runtime? If so, what triggers
the changes?

A: Yes. We have set a random number to change their behaviors with a relatively
small probability at each step. Furthermore if their zone is often disturbed,
they will change their original strategy into a more safer one.

9. What algorithm(s) do you use for agent path planning?
A: Dijkstra algorithm,Breadth-First Search Algorithm and algorithm 1.
10. How do you make use of the buying-mechanism?
A: During the contest, there is a certain strategy that only saboteurs will buy

sabotage device and shield and the strength value will always be equal to
the health value or one unit more.

11. How important are achievements for your overall strategy?
A: In the contest, we value achievements for it is used for obtaining scores.
12. Do your agents have an explicit mental state?
A: No.
13. How do your agents communicate? And what do they communicate?
A: My agents communicate by sharing memory. They communicate about the

information of map, enemies, status of friend agents, arrangement of team
work mission.

14. How do you organize your agents? Do you use e.g. hierarchies? Is your or-
ganization implicit or explicit?

A: They are all equipped with the same program, share the same knowledge
base at any time and act themselves. They are all at the same status. Every
time a group of agents are applying for the same mission, one of them will
be a part-time manager. Hence we organize our agents explicitly and no
hierarchy is exploited.

15. Is most of you agents’ behavior emergent on an individual or team level?
A: When an agent is in emergent situation, it will interrupt its allocated task

to deal with it.
16. If your agents perform some planning, how many steps do they plan ahead?
A: It will only perform planning in path finding where the number of steps is

equal to the number of nodes in a path.

AiWYX

DEPARTMENTOF INFORMATICS 130

17. If you have a perceive-think-act cycle, how is it synchronized with the server?
A: To synchronize with the server, multi-thread TCP/IP listeners listen to the

message from the server, and the respective agent will decide which action
to perform. Furthermore a multi-thread TCP/IP sender will send the action
to the server. Note that our program is so efficient that any agent is always
able to send its action to the server before the next percept arrives.

E Conclusion

1. What have you learned from the participation in the contest?
A: We strengthen the preconditions in order to restrict the search space. More-

over it should record some important information in previous procedure.
Another issue is to keep the balance between maximizing our worst outcome
and minimizing the best outcome of the enemies in the meantime. We ought
to consider the response of our enemies when striving for our ideal outcome.

2. Which are the strong and weak points of the team?
A: One of our strong points is that we use Algorithm 1 for scheduling to avoid

redundant work, decreasing cost of the team. Besides Algorithm 2 ensures
that our agents search for a large and unexplored area and then occupy it.
Weaknesses are that we are lack of a good disturbing strategy and not able
to defend our own area effectively.

3. How suitable was the chosen programming language, methodology, tools,
and algorithms?

A: I choose C++ to ensure efficiency and support various algorithms.
4. What can be improved in the contest for next year?
A: Add the strategy to attack enemies’ zones. Try to protect my zone.
5. Why did your team perform as it did? Why did the other teams perform

better/worse than yours?
A: My team just contain one person. And it’s my first time participated in this

contest. And I have just got a bachelor degree. And I don’t have enough
time to implement all my thought. Their teams disturb my zone, so my zone
is not stable and I don’t disturb enemy’s zone.

6. Which other research fields might be interested in the Multi-Agent Program-
ming Contest?

A: Distributed algorithms, Game theory.
7. How can the current scenario be optimized? How would those optimization

pay off?
A: (1) servers should never send repetitive static information; (2) a percept

should contain no information about the teammates. That will relieve the
pressure of network communications.

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

131 Technical Report IfI-13-01

Streett

11 PGIM

Team PGIM comes from the Islamic Azad University of Malayer, Iran. The 3
developers used agent-specific technologies for developing their team: Prometheus,
JACK.Nevertheless the teamorganization is not distributed, and agents broad-
cast their percepts.
PGIM did not provide an extensive team description to include in this

document.

12 Streett

TeamStreett was composed by a single independent developer from theUSA.
Agentswere developed in Java, based on the sample agents providedwith the
MASSim platform. Agents shared only vital information and coordination
was achieved by sharing location data.
Streett did not provide an extensive team description to include in this

document.

DEPARTMENTOF INFORMATICS 132

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Part III

All Results in Great Detail

133 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 1

13 AiWYX vs. PGIM – Simulation 1

13.1 Scores, Zone Stability and Achievements

Figure 51: Summed scores. Figure 52: Achievement points.

Figure 53: Zones scores. Figure 54: Zones scores and achieve-
ment points.

Figure 55: Zone Stabilities.

DEPARTMENTOF INFORMATICS 134

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step AiWYX PGIM

1 surveyed10, area20, surveyed40, area10, surveyed20 surveyed10, area10
2 surveyed80 area20, surveyed40, surveyed20
3 surveyed80
4 surveyed160, proved5
5 proved5
6 surveyed160
7 proved10
8 inspected5
10 proved10
11 surveyed320
14 proved20
15 attacked5
17 proved20
18 inspected10 surveyed320
24 attacked10
27 inspected5
30 proved40 attacked5
31 attacked20
47 surveyed640
50 attacked10
53 attacked40
60 proved80
61 proved40
74 attacked20
80 inspected20
95 area40
98 attacked80
108 parried5
112 proved160
117 inspected10
119 area40
124 attacked40
128 area80
151 parried10
156 attacked160
170 area160, area320, area80, area640
194 attacked80
197 proved80
268 parried20
273 attacked320
334 attacked160
493 attacked640
584 attacked320
692 surveyed640
735 parried40

Figure 56: Achievements.

135 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 1

13.2 Stability

Reason AiWYX % PGIM %

failed away 1 0,01 8 0,05
failed parried 55 0,37

failed wrong param 27 0,18
failed random 159 1,06 127 0,85
failed resources 1 0,01
failed attacked 62 0,41 48 0,32

Figure 57: Failed actions.

DEPARTMENTOF INFORMATICS 136

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

13.3 Achievements

Figure 58: areaValueAchievements. Figure 59:
inspectedAgentsAchievements.

Figure 60:
probedVerticesAchievements.

Figure 61:
successfulAttacksAchievements.

Figure 62:
successfulParriesAchievements.

Figure 63:
surveyedEdgesAchievements.

137 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 1

13.4 Actions per Role

Figure 64: AiWYX vs. PGIM – Simula-
tion 1 - AiWYX Explorer Actions.

Figure 65: AiWYX vs. PGIM – Simula-
tion 1 - AiWYX Inspector Actions.

Figure 66: AiWYX vs. PGIM – Simula-
tion 1 - AiWYX Repairer Actions.

Figure 67: AiWYX vs. PGIM – Simula-
tion 1 - AiWYX Saboteur Actions.

Figure 68: AiWYX vs. PGIM – Simula-
tion 1 - AiWYX Sentinel Actions.

DEPARTMENTOF INFORMATICS 138

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 69: AiWYX vs. PGIM – Simula-
tion 1 - PGIM Explorer Actions.

Figure 70: AiWYX vs. PGIM – Simula-
tion 1 - PGIM Inspector Actions.

Figure 71: AiWYX vs. PGIM – Simula-
tion 1 - PGIM Repairer Actions.

Figure 72: AiWYX vs. PGIM – Simula-
tion 1 - PGIM Saboteur Actions.

Figure 73: AiWYX vs. PGIM – Simula-
tion 1 - PGIM Sentinel Actions.

139 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 2

14 AiWYX vs. PGIM – Simulation 2

14.1 Scores, Zone Stability and Achievements

Figure 74: Summed scores. Figure 75: Achievement points.

Figure 76: Zones scores. Figure 77: Zones scores and achieve-
ment points.

Figure 78: Zone Stabilities.

DEPARTMENTOF INFORMATICS 140

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step AiWYX PGIM

1 surveyed10, surveyed40, surveyed20 surveyed10, surveyed40, surveyed20
2 surveyed80, area10 surveyed80, area10
3 proved5
4 surveyed160 proved5
6 area20 surveyed160
7 proved10, inspected5 proved10
10 area20
14 inspected10, proved20 proved20
15 attacked5
16 area40 surveyed320
17 surveyed320
20 area40
23 attacked10 attacked5
27 proved40
36 attacked10
39 attacked20
42 proved40
53 attacked20
55 proved80
62 attacked40
84 attacked40
89 surveyed640
92 attacked80
94 parried5
114 proved160
124 area80
127 area80
138 attacked80
146 parried10
151 attacked160
152 area160, area320
180 proved80
238 attacked160
260 parried20
264 attacked320
356 area640
459 attacked320
461 attacked640
538 parried40

Figure 79: Achievements.

141 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 2

14.2 Stability

Reason AiWYX % PGIM %

failed away 12 0,08
failed parried 77 0,51

failed wrong param 48 0,32
failed random 150 1 134 0,89
failed resources 1 0,01
failed attacked 83 0,55 80 0,53

Figure 80: Failed actions.

DEPARTMENTOF INFORMATICS 142

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

14.3 Achievements

Figure 81: areaValueAchievements. Figure 82:
inspectedAgentsAchievements.

Figure 83:
probedVerticesAchievements.

Figure 84:
successfulAttacksAchievements.

Figure 85:
successfulParriesAchievements.

Figure 86:
surveyedEdgesAchievements.

143 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 2

14.4 Actions per Role

Figure 87: AiWYX vs. PGIM – Simula-
tion 2 - AiWYX Explorer Actions.

Figure 88: AiWYX vs. PGIM – Simula-
tion 2 - AiWYX Inspector Actions.

Figure 89: AiWYX vs. PGIM – Simula-
tion 2 - AiWYX Repairer Actions.

Figure 90: AiWYX vs. PGIM – Simula-
tion 2 - AiWYX Saboteur Actions.

Figure 91: AiWYX vs. PGIM – Simula-
tion 2 - AiWYX Sentinel Actions.

DEPARTMENTOF INFORMATICS 144

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 92: AiWYX vs. PGIM – Simula-
tion 2 - PGIM Explorer Actions.

Figure 93: AiWYX vs. PGIM – Simula-
tion 2 - PGIM Inspector Actions.

Figure 94: AiWYX vs. PGIM – Simula-
tion 2 - PGIM Repairer Actions.

Figure 95: AiWYX vs. PGIM – Simula-
tion 2 - PGIM Saboteur Actions.

Figure 96: AiWYX vs. PGIM – Simula-
tion 2 - PGIM Sentinel Actions.

145 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 3

15 AiWYX vs. PGIM – Simulation 3

15.1 Scores, Zone Stability and Achievements

Figure 97: Summed scores. Figure 98: Achievement points.

Figure 99: Zones scores. Figure 100: Zones scores and achieve-
ment points.

Figure 101: Zone Stabilities.

DEPARTMENTOF INFORMATICS 146

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step AiWYX PGIM

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80 surveyed80
4 surveyed160, proved5 proved5
5 surveyed160
6 proved10, inspected5
7 proved10
8 area20
9 area20
11 attacked5
12 proved20 attacked5
13 inspected10
14 attacked10
17 proved20, attacked10
20 surveyed320
25 attacked20 area40
30 proved40
33 attacked20
38 surveyed320
40 area40
46 attacked40
53 proved40
63 proved80
67 attacked40
68 area80
75 attacked80
94 area80
123 proved160
143 parried5
148 attacked160 attacked80
188 parried10
207 area160, area320
240 proved80
274 attacked320
286 attacked160
344 parried20
511 attacked640
547 attacked320
551 parried40

Figure 102: Achievements.

147 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 3

15.2 Stability

Reason AiWYX % PGIM %

failed away 12 0,08
failed parried 95 0,63
failed random 147 0,98 176 1,17

failed wrong param 55 0,37
failed resources 1 0,01
failed attacked 72 0,48 71 0,47

Figure 103: Failed actions.

DEPARTMENTOF INFORMATICS 148

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

15.3 Achievements

Figure 104: areaValueAchievements. Figure 105:
inspectedAgentsAchievements.

Figure 106:
probedVerticesAchievements.

Figure 107:
successfulAttacksAchievements.

Figure 108:
successfulParriesAchievements.

Figure 109:
surveyedEdgesAchievements.

149 Technical Report IfI-13-01

AiWYX vs. PGIM – Simulation 3

15.4 Actions per Role

Figure 110: AiWYX vs. PGIM – Simu-
lation 3 - AiWYX Explorer Actions.

Figure 111: AiWYX vs. PGIM – Simu-
lation 3 - AiWYX Inspector Actions.

Figure 112: AiWYX vs. PGIM – Simu-
lation 3 - AiWYX Repairer Actions.

Figure 113: AiWYX vs. PGIM – Simu-
lation 3 - AiWYX Saboteur Actions.

Figure 114: AiWYX vs. PGIM – Simu-
lation 3 - AiWYX Sentinel Actions.

DEPARTMENTOF INFORMATICS 150

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 115: AiWYX vs. PGIM – Simu-
lation 3 - PGIM Explorer Actions.

Figure 116: AiWYX vs. PGIM – Simu-
lation 3 - PGIM Inspector Actions.

Figure 117: AiWYX vs. PGIM – Simu-
lation 3 - PGIM Repairer Actions.

Figure 118: AiWYX vs. PGIM – Simu-
lation 3 - PGIM Saboteur Actions.

Figure 119: AiWYX vs. PGIM – Simu-
lation 3 - PGIM Sentinel Actions.

151 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 1

16 AiWYX vs. Python-DTU – Simulation 1

16.1 Scores, Zone Stability and Achievements

Figure 120: Summed scores. Figure 121: Achievement points.

Figure 122: Zones scores. Figure 123: Zones scores and achieve-
ment points.

Figure 124: Zone Stabilities.

DEPARTMENTOF INFORMATICS 152

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step AiWYX Python-DTU

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80
3 surveyed80, proved5
4 proved5
5 surveyed160 proved10
6 inspected5
7 proved10, attacked5 attacked5
9 surveyed160
11 inspected10
12 proved20
13 inspected5
14 attacked10
15 surveyed320
18 proved20
19 area20
25 attacked10
28 inspected10 area20
29 proved40, surveyed320
36 proved40
37 attacked20
41 attacked20
43 area40
48 area80
53 area40
58 attacked40
60 proved80
63 attacked40
68 proved80, inspected20
71 surveyed640
86 attacked80
100 attacked80
106 surveyed640
110 proved160
116 area160
135 attacked160
142 proved160
174 area80
180 attacked160
192 parried5
196 parried10
228 attacked320 parried20
254 inspected20
301 attacked320
351 area160
357 attacked640
411 parried40
468 area320
542 attacked640

Figure 125: Achievements.

153 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 1

16.2 Stability

Reason AiWYX % Python-DTU %

failed away 1 0,01
failed parried 110 0,73
failed random 152 1,01 146 0,97
failed attacked 72 0,48 150 1

Figure 126: Failed actions.

DEPARTMENTOF INFORMATICS 154

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

16.3 Achievements

Figure 127: areaValueAchievements. Figure 128:
inspectedAgentsAchievements.

Figure 129:
probedVerticesAchievements.

Figure 130:
successfulAttacksAchievements.

Figure 131:
successfulParriesAchievements.

Figure 132:
surveyedEdgesAchievements.

155 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 1

16.4 Actions per Role

DEPARTMENTOF INFORMATICS 156

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 133: AiWYX vs. Python-DTU
– Simulation 1 - AiWYX Explorer Ac-
tions.

Figure 134: AiWYX vs. Python-DTU
– Simulation 1 - AiWYX Inspector Ac-
tions.

Figure 135: AiWYX vs. Python-DTU
– Simulation 1 - AiWYX Repairer Ac-
tions.

Figure 136: AiWYX vs. Python-DTU
– Simulation 1 - AiWYX Saboteur Ac-
tions.

Figure 137: AiWYX vs. Python-DTU
– Simulation 1 - AiWYX Sentinel Ac-
tions.

157 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 1

Figure 138: AiWYXvs. Python-DTU –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 139: AiWYXvs. Python-DTU –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 140: AiWYXvs. Python-DTU –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 141: AiWYX vs. Python-DTU –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 142: AiWYXvs. Python-DTU –
Simulation 1 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 158

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

17 AiWYX vs. Python-DTU – Simulation 2

17.1 Scores, Zone Stability and Achievements

Figure 143: Summed scores. Figure 144: Achievement points.

Figure 145: Zones scores. Figure 146: Zones scores and achieve-
ment points.

Figure 147: Zone Stabilities.

159 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 2

Step AiWYX Python-DTU

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80
3 inspected5 proved5
4 proved5
5 surveyed160 proved10, surveyed80, attacked5, inspected5
7 area20, proved10
8 attacked5
9 proved20
10 inspected10, attacked10
11 surveyed160
15 surveyed320
16 area20
18 attacked20
20 inspected10
24 proved20
25 proved40, surveyed320
28 attacked10
30 area40
38 attacked20
41 attacked40
44 proved40
49 attacked40
50 proved80
71 attacked80
74 proved80
96 surveyed640
98 proved160
101 attacked160
110 area40
111 surveyed640
113 inspected20
132 proved160
135 attacked80
137 area80
153 attacked320
162 area80
198 attacked160
206 parried5
228 area160
276 attacked640
305 attacked320
532 attacked640
637 parried10
702 parried20

Figure 148: Achievements.

DEPARTMENTOF INFORMATICS 160

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

17.2 Stability

Reason AiWYX % Python-DTU %

failed away 2 0,01
failed parried 30 0,2
failed random 166 1,11 142 0,95
failed 2 0,01

failed attacked 63 0,42 165 1,1
noAction 2 0,01

Figure 149: Failed actions.

161 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 2

17.3 Achievements

Figure 150: areaValueAchievements. Figure 151:
inspectedAgentsAchievements.

Figure 152:
probedVerticesAchievements.

Figure 153:
successfulAttacksAchievements.

Figure 154:
successfulParriesAchievements.

Figure 155:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 162

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

17.4 Actions per Role

163 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 2

Figure 156: AiWYX vs. Python-DTU
– Simulation 2 - AiWYX Explorer Ac-
tions.

Figure 157: AiWYX vs. Python-DTU
– Simulation 2 - AiWYX Inspector Ac-
tions.

Figure 158: AiWYX vs. Python-DTU
– Simulation 2 - AiWYX Repairer Ac-
tions.

Figure 159: AiWYX vs. Python-DTU
– Simulation 2 - AiWYX Saboteur Ac-
tions.

Figure 160: AiWYX vs. Python-DTU
– Simulation 2 - AiWYX Sentinel Ac-
tions.

DEPARTMENTOF INFORMATICS 164

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 161: AiWYX vs. Python-DTU –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 162: AiWYXvs. Python-DTU –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 163: AiWYXvs. Python-DTU –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 164: AiWYXvs. Python-DTU –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 165: AiWYXvs. Python-DTU –
Simulation 2 - Python-DTU Sentinel
Actions.

165 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 3

18 AiWYX vs. Python-DTU – Simulation 3

18.1 Scores, Zone Stability and Achievements

Figure 166: Summed scores. Figure 167: Achievement points.

Figure 168: Zones scores. Figure 169: Zones scores and achieve-
ment points.

Figure 170: Zone Stabilities.

DEPARTMENTOF INFORMATICS 166

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step AiWYX Python-DTU

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80
3 proved5 surveyed80, proved5, inspected5
4 attacked5
5 surveyed160 area20, proved10
6 proved10, inspected5
7 inspected10
8 attacked5 attacked10
11 proved20
12 attacked10
13 surveyed160
14 inspected10
17 proved20
18 attacked20
22 attacked20
26 area20
30 inspected20
31 proved40
32 attacked40
33 surveyed320
37 proved40
38 attacked40
41 surveyed320
43 area40
52 area40
60 attacked80, area80
61 proved80
67 proved80
69 attacked80
99 inspected20
103 parried5
114 proved160
118 area160
119 attacked160
123 area160, area80
127 proved160
140 attacked160
157 parried10
182 attacked320
250 parried20
267 attacked320
288 parried40
351 attacked640
517 attacked640
642 parried80

Figure 171: Achievements.

167 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 3

18.2 Stability

Reason AiWYX % Python-DTU %

failed away 2 0,01
failed parried 124 0,83
failed random 147 0,98 132 0,88
failed attacked 104 0,69 161 1,07

Figure 172: Failed actions.

DEPARTMENTOF INFORMATICS 168

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

18.3 Achievements

Figure 173: areaValueAchievements. Figure 174:
inspectedAgentsAchievements.

Figure 175:
probedVerticesAchievements.

Figure 176:
successfulAttacksAchievements.

Figure 177:
successfulParriesAchievements.

Figure 178:
surveyedEdgesAchievements.

169 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 3

18.4 Actions per Role

DEPARTMENTOF INFORMATICS 170

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 179: AiWYX vs. Python-DTU
– Simulation 3 - AiWYX Explorer Ac-
tions.

Figure 180: AiWYX vs. Python-DTU
– Simulation 3 - AiWYX Inspector Ac-
tions.

Figure 181: AiWYX vs. Python-DTU
– Simulation 3 - AiWYX Repairer Ac-
tions.

Figure 182: AiWYX vs. Python-DTU
– Simulation 3 - AiWYX Saboteur Ac-
tions.

Figure 183: AiWYX vs. Python-DTU
– Simulation 3 - AiWYX Sentinel Ac-
tions.

171 Technical Report IfI-13-01

AiWYX vs. Python-DTU – Simulation 3

Figure 184: AiWYXvs. Python-DTU –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 185: AiWYXvs. Python-DTU –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 186: AiWYXvs. Python-DTU –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 187: AiWYX vs. Python-DTU –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 188: AiWYXvs. Python-DTU –
Simulation 3 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 172

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

19 AiWYX vs. Streett – Simulation 1

19.1 Scores, Zone Stability and Achievements

Figure 189: Summed scores. Figure 190: Achievement points.

Figure 191: Zones scores. Figure 192: Zones scores and achieve-
ment points.

Figure 193: Zone Stabilities.

173 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 1

Step AiWYX Streett

1 surveyed10, surveyed80, surveyed40, surveyed20 surveyed40, surveyed10, surveyed20
2 surveyed80
3 surveyed160
4 proved5, inspected5 proved5
6 proved10
7 proved10
8 attacked5
9 area10, attacked5
11 area10
12 surveyed320 area20, proved20
15 inspected10 surveyed160, inspected5
16 area20, proved20
20 attacked10
21 area40
24 area40
27 proved40
32 proved40
37 inspected10
38 attacked10
49 attacked20
50 attacked20
61 proved80 proved80
64 surveyed640
81 inspected20
84 surveyed320
86 attacked40
110 attacked40
118 proved160
140 attacked80
182 area80
228 area160, area320
249 proved160
266 area640
303 attacked160
743 attacked320

Figure 194: Achievements.

DEPARTMENTOF INFORMATICS 174

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

19.2 Stability

Reason AiWYX % Streett %

failed away 1 0,01
failed random 153 1,02 155 1,03
failed resources 302 2,01
failed attacked 24 0,16 56 0,37
failed status 4 0,03

Figure 195: Failed actions.

175 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 1

19.3 Achievements

Figure 196: areaValueAchievements. Figure 197:
inspectedAgentsAchievements.

Figure 198:
probedVerticesAchievements.

Figure 199:
successfulAttacksAchievements.

Figure 200:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 176

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

19.4 Actions per Role

Figure 201: AiWYX vs. Streett – Simu-
lation 1 - AiWYX Explorer Actions.

Figure 202: AiWYX vs. Streett – Sim-
ulation 1 - AiWYX Inspector Actions.

Figure 203: AiWYX vs. Streett – Sim-
ulation 1 - AiWYX Repairer Actions.

Figure 204: AiWYX vs. Streett – Sim-
ulation 1 - AiWYX Saboteur Actions.

Figure 205: AiWYX vs. Streett – Sim-
ulation 1 - AiWYX Sentinel Actions.

177 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 1

Figure 206: AiWYX vs. Streett – Sim-
ulation 1 - Streett Explorer Actions.

Figure 207: AiWYX vs. Streett – Simu-
lation 1 - Streett Inspector Actions.

Figure 208: AiWYX vs. Streett – Sim-
ulation 1 - Streett Repairer Actions.

Figure 209: AiWYX vs. Streett – Sim-
ulation 1 - Streett Saboteur Actions.

Figure 210: AiWYX vs. Streett – Simu-
lation 1 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 178

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

20 AiWYX vs. Streett – Simulation 2

20.1 Scores, Zone Stability and Achievements

Figure 211: Summed scores. Figure 212: Achievement points.

Figure 213: Zones scores. Figure 214: Zones scores and achieve-
ment points.

Figure 215: Zone Stabilities.

179 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 2

Step AiWYX Streett

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed20
2 surveyed80, inspected5 surveyed40, surveyed80, inspected5
3 proved5
4 surveyed160 area10, proved5
6 area20, proved10
7 proved10
11 attacked5 surveyed160
12 surveyed320
13 attacked5
15 proved20
16 attacked10 proved20
21 inspected10, area20
23 inspected10
27 attacked10
35 proved40, attacked20
36 proved40
46 attacked20
51 inspected20
60 proved80
65 attacked40
74 surveyed640
78 area40
79 surveyed320
94 area80
96 area160
99 proved80
112 proved160
142 attacked80
223 area320, area640
247 attacked160
386 attacked320
724 attacked640

Figure 216: Achievements.

DEPARTMENTOF INFORMATICS 180

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

20.2 Stability

Reason AiWYX % Streett %

failed away 5 0,03
failed random 131 0,87 152 1,01
failed resources 317 2,11
failed attacked 6 0,04 82 0,55

Figure 217: Failed actions.

181 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 2

20.3 Achievements

Figure 218: areaValueAchievements. Figure 219:
inspectedAgentsAchievements.

Figure 220:
probedVerticesAchievements.

Figure 221:
successfulAttacksAchievements.

Figure 222:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 182

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

20.4 Actions per Role

Figure 223: AiWYX vs. Streett – Sim-
ulation 2 - AiWYX Explorer Actions.

Figure 224: AiWYX vs. Streett – Sim-
ulation 2 - AiWYX Inspector Actions.

Figure 225: AiWYX vs. Streett – Sim-
ulation 2 - AiWYX Repairer Actions.

Figure 226: AiWYX vs. Streett – Sim-
ulation 2 - AiWYX Saboteur Actions.

Figure 227: AiWYX vs. Streett – Simu-
lation 2 - AiWYX Sentinel Actions.

183 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 2

Figure 228: AiWYX vs. Streett – Sim-
ulation 2 - Streett Explorer Actions.

Figure 229: AiWYX vs. Streett – Sim-
ulation 2 - Streett Inspector Actions.

Figure 230: AiWYX vs. Streett – Sim-
ulation 2 - Streett Repairer Actions.

Figure 231: AiWYX vs. Streett – Simu-
lation 2 - Streett Saboteur Actions.

Figure 232: AiWYX vs. Streett – Sim-
ulation 2 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 184

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

21 AiWYX vs. Streett – Simulation 3

21.1 Scores, Zone Stability and Achievements

Figure 233: Summed scores. Figure 234: Achievement points.

Figure 235: Zones scores. Figure 236: Zones scores and achieve-
ment points.

Figure 237: Zone Stabilities.

185 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 3

Step AiWYX Streett

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed20
2 surveyed80 surveyed40, surveyed80
3 area10
4 proved5 proved5
5 surveyed160
6 inspected5 area20, proved10
7 proved10, attacked5
8 inspected5
11 area20
12 proved20
13 inspected10
14 proved20
16 surveyed160
18 attacked5
20 surveyed320, attacked10
29 proved40
31 proved40 inspected10
32 attacked10
37 attacked20
40 inspected20
55 proved80
58 attacked20
72 area40
75 proved80
78 attacked40
96 area80
110 surveyed320
111 proved160
137 attacked80
141 inspected20
170 area160, area320
458 attacked40

Figure 238: Achievements.

DEPARTMENTOF INFORMATICS 186

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

21.2 Stability

Reason AiWYX % Streett %

failed away 6 0,04
failed random 143 0,95 139 0,93
failed resources 276 1,84
failed attacked 5 0,03 51 0,34

Figure 239: Failed actions.

187 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 3

21.3 Achievements

Figure 240: areaValueAchievements. Figure 241:
inspectedAgentsAchievements.

Figure 242:
probedVerticesAchievements.

Figure 243:
successfulAttacksAchievements.

Figure 244:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 188

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

21.4 Actions per Role

Figure 245: AiWYX vs. Streett – Sim-
ulation 3 - AiWYX Explorer Actions.

Figure 246: AiWYX vs. Streett – Sim-
ulation 3 - AiWYX Inspector Actions.

Figure 247: AiWYX vs. Streett – Simu-
lation 3 - AiWYX Repairer Actions.

Figure 248: AiWYX vs. Streett – Sim-
ulation 3 - AiWYX Saboteur Actions.

Figure 249: AiWYX vs. Streett – Sim-
ulation 3 - AiWYX Sentinel Actions.

189 Technical Report IfI-13-01

AiWYX vs. Streett – Simulation 3

Figure 250: AiWYX vs. Streett – Sim-
ulation 3 - Streett Explorer Actions.

Figure 251: AiWYX vs. Streett – Simu-
lation 3 - Streett Inspector Actions.

Figure 252: AiWYX vs. Streett – Sim-
ulation 3 - Streett Repairer Actions.

Figure 253: AiWYX vs. Streett – Sim-
ulation 3 - Streett Saboteur Actions.

Figure 254: AiWYX vs. Streett – Simu-
lation 3 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 190

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

22 AiWYX vs. TUB – Simulation 1

22.1 Scores, Zone Stability and Achievements

Figure 255: Summed scores. Figure 256: Achievement points.

Figure 257: Zones scores. Figure 258: Zones scores and achieve-
ment points.

Figure 259: Zone Stabilities.

191 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 1

Step TUB AiWYX

1 surveyed10, surveyed80, surveyed40, surveyed20 surveyed10, surveyed40, surveyed20
2 surveyed80
3 proved5
5 attacked5, proved5 surveyed160, attacked5
7 area10 proved10
8 area20, inspected5
9 attacked10
11 proved10 inspected5
12 area40
14 inspected10, attacked10
15 proved20
17 surveyed320, area10
18 attacked20
25 inspected10
26 proved20
27 surveyed160, area80 attacked20
31 proved40
39 attacked40
45 area20
46 attacked40
57 proved40 inspected20
62 surveyed640, proved80
65 attacked80
72 attacked80
100 attacked160
114 proved160
134 attacked160
153 area40
157 attacked320
159 surveyed320
171 area160, area80
190 proved80
275 attacked640
293 attacked320
294 area320
601 proved160
611 attacked640

Figure 260: Achievements.

DEPARTMENTOF INFORMATICS 192

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

22.2 Stability

Reason TUB % AiWYX %

failed away 1 0,01
failed random 142 0,95 152 1,01
failed resources 1 0,01
failed attacked 11 0,07 38 0,25

Figure 261: Failed actions.

193 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 1

22.3 Achievements

Figure 262: areaValueAchievements. Figure 263:
inspectedAgentsAchievements.

Figure 264:
probedVerticesAchievements.

Figure 265:
successfulAttacksAchievements.

Figure 266:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 194

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

22.4 Actions per Role

Figure 267: AiWYX vs. TUB – Simula-
tion 1 - AiWYX Explorer Actions.

Figure 268: AiWYX vs. TUB – Simula-
tion 1 - AiWYX Inspector Actions.

Figure 269: AiWYX vs. TUB – Simula-
tion 1 - AiWYX Repairer Actions.

Figure 270: AiWYX vs. TUB – Simula-
tion 1 - AiWYX Saboteur Actions.

Figure 271: AiWYX vs. TUB – Simula-
tion 1 - AiWYX Sentinel Actions.

195 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 1

Figure 272: AiWYX vs. TUB – Simula-
tion 1 - TUB Explorer Actions.

Figure 273: AiWYX vs. TUB – Simula-
tion 1 - TUB Inspector Actions.

Figure 274: AiWYX vs. TUB – Simula-
tion 1 - TUB Repairer Actions.

Figure 275: AiWYX vs. TUB – Simula-
tion 1 - TUB Saboteur Actions.

Figure 276: AiWYX vs. TUB – Simula-
tion 1 - TUB Sentinel Actions.

DEPARTMENTOF INFORMATICS 196

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

23 AiWYX vs. TUB – Simulation 2

23.1 Scores, Zone Stability and Achievements

Figure 277: Summed scores. Figure 278: Achievement points.

Figure 279: Zones scores. Figure 280: Zones scores and achieve-
ment points.

Figure 281: Zone Stabilities.

197 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 2

Step TUB AiWYX

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
3 surveyed80 surveyed80, proved5
4 area20, proved5 inspected5
6 surveyed160
7 inspected5 area20, proved10
8 attacked5
11 attacked5
12 area40 inspected10
13 proved20
14 proved10
21 attacked10
22 surveyed320
23 inspected10
25 proved20
28 proved40
29 area80
30 attacked10
31 surveyed160
46 attacked20
50 attacked20
55 proved40
60 area160
63 proved80
79 inspected20
91 attacked40 attacked40
109 attacked80
118 area40
120 proved160
125 attacked80
130 proved80
138 area160, area80
140 attacked160
166 surveyed320
193 attacked320
205 attacked160
216 area320
301 attacked640
360 inspected20
366 attacked320
429 proved160
690 attacked640

Figure 282: Achievements.

DEPARTMENTOF INFORMATICS 198

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

23.2 Stability

Reason TUB % AiWYX %

failed away 2 0,01
failed wrong param 238 1,59
failed random 126 0,84 144 0,96
failed resources 1 0,01 2 0,01

failed 124 0,83
failed attacked 15 0,1 18 0,12
noAction 125 0,83

Figure 283: Failed actions.

199 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 2

23.3 Achievements

Figure 284: areaValueAchievements. Figure 285:
inspectedAgentsAchievements.

Figure 286:
probedVerticesAchievements.

Figure 287:
successfulAttacksAchievements.

Figure 288:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 200

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

23.4 Actions per Role

Figure 289: AiWYX vs. TUB – Simula-
tion 2 - AiWYX Explorer Actions.

Figure 290: AiWYX vs. TUB – Simula-
tion 2 - AiWYX Inspector Actions.

Figure 291: AiWYX vs. TUB – Simula-
tion 2 - AiWYX Repairer Actions.

Figure 292: AiWYX vs. TUB – Simula-
tion 2 - AiWYX Saboteur Actions.

Figure 293: AiWYX vs. TUB – Simula-
tion 2 - AiWYX Sentinel Actions.

201 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 2

Figure 294: AiWYX vs. TUB – Simula-
tion 2 - TUB Explorer Actions.

Figure 295: AiWYX vs. TUB – Simula-
tion 2 - TUB Inspector Actions.

Figure 296: AiWYX vs. TUB – Simula-
tion 2 - TUB Repairer Actions.

Figure 297: AiWYX vs. TUB – Simula-
tion 2 - TUB Saboteur Actions.

Figure 298: AiWYX vs. TUB – Simula-
tion 2 - TUB Sentinel Actions.

DEPARTMENTOF INFORMATICS 202

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

24 AiWYX vs. TUB – Simulation 3

24.1 Scores, Zone Stability and Achievements

Figure 299: Summed scores. Figure 300: Achievement points.

Figure 301: Zones scores. Figure 302: Zones scores and achieve-
ment points.

Figure 303: Zone Stabilities.

203 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 3

Step TUB AiWYX

1 surveyed40, surveyed10, surveyed20, area10, surveyed80 surveyed10, surveyed40, area10, surveyed20
2 area20 surveyed80
4 proved5, inspected5 proved5, inspected5
5 area20, surveyed160
7 proved10
10 attacked5
12 area40, proved10, attacked5
13 inspected10
15 inspected10
17 proved20
18 attacked10 attacked10
19 surveyed320
20 area80
23 proved20
24 surveyed160
25 attacked20
29 attacked20
33 proved40
36 attacked40
41 attacked40
53 proved40
57 attacked80
60 proved80
66 attacked80
90 attacked160
101 area40, area160, area80
103 attacked160
118 proved160
153 attacked320
169 area320
228 attacked320
263 attacked640
540 attacked640

Figure 304: Achievements.

DEPARTMENTOF INFORMATICS 204

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

24.2 Stability

Reason TUB % AiWYX %

failed away 2 0,01
failed random 164 1,09 145 0,97
failed resources 3 0,02 4 0,03
failed attacked 11 0,07 74 0,49

Figure 305: Failed actions.

205 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 3

24.3 Achievements

Figure 306: areaValueAchievements. Figure 307:
inspectedAgentsAchievements.

Figure 308:
probedVerticesAchievements.

Figure 309:
successfulAttacksAchievements.

Figure 310:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 206

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

24.4 Actions per Role

Figure 311: AiWYX vs. TUB – Simula-
tion 3 - AiWYX Explorer Actions.

Figure 312: AiWYX vs. TUB – Simula-
tion 3 - AiWYX Inspector Actions.

Figure 313: AiWYX vs. TUB – Simula-
tion 3 - AiWYX Repairer Actions.

Figure 314: AiWYX vs. TUB – Simula-
tion 3 - AiWYX Saboteur Actions.

Figure 315: AiWYX vs. TUB – Simula-
tion 3 - AiWYX Sentinel Actions.

207 Technical Report IfI-13-01

AiWYX vs. TUB – Simulation 3

Figure 316: AiWYX vs. TUB – Simula-
tion 3 - TUB Explorer Actions.

Figure 317: AiWYX vs. TUB – Simula-
tion 3 - TUB Inspector Actions.

Figure 318: AiWYX vs. TUB – Simula-
tion 3 - TUB Repairer Actions.

Figure 319: AiWYX vs. TUB – Simula-
tion 3 - TUB Saboteur Actions.

Figure 320: AiWYX vs. TUB – Simula-
tion 3 - TUB Sentinel Actions.

DEPARTMENTOF INFORMATICS 208

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

25 AiWYX vs. UFSC – Simulation 1

25.1 Scores, Zone Stability and Achievements

Figure 321: Summed scores. Figure 322: Achievement points.

Figure 323: Zones scores. Figure 324: Zones scores and achieve-
ment points.

Figure 325: Zone Stabilities.

209 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 1

Step AiWYX UFSC

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80 attacked5
3 surveyed80, proved5
4 proved5
5 area20, surveyed160 proved10
7 proved10 surveyed160
8 attacked5, inspected5
9 inspected5
10 area20
14 proved20, attacked10
17 inspected10
18 surveyed320
20 proved20 surveyed320
25 proved40
26 inspected10, attacked20, parried5
28 attacked10
35 proved40
47 area40
52 proved80
55 attacked40
68 attacked20
74 proved80
79 attacked80
86 inspected20 area80
91 surveyed640
100 parried10
103 proved160
122 attacked40
127 parried20
145 proved160
164 area40
170 attacked160
197 surveyed640
206 area80
218 attacked80
240 area160
281 area160
345 attacked160
380 attacked320
436 attacked320
489 parried40
585 inspected20
608 attacked640
641 attacked640

Figure 326: Achievements.

DEPARTMENTOF INFORMATICS 210

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

25.2 Stability

Reason AiWYX % UFSC %

failed away 4 0,03 1 0,01
failed parried 63 0,42
failed random 151 1,01 162 1,08
failed resources 3 0,02

failed 192 1,28
failed attacked 118 0,79 40 0,27
noAction 194 1,29

Figure 327: Failed actions.

211 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 1

25.3 Achievements

Figure 328: areaValueAchievements. Figure 329:
inspectedAgentsAchievements.

Figure 330:
probedVerticesAchievements.

Figure 331:
successfulAttacksAchievements.

Figure 332:
successfulParriesAchievements.

Figure 333:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 212

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

25.4 Actions per Role

Figure 334: AiWYX vs. UFSC – Simu-
lation 1 - AiWYX Explorer Actions.

Figure 335: AiWYX vs. UFSC – Simu-
lation 1 - AiWYX Inspector Actions.

Figure 336: AiWYX vs. UFSC – Simu-
lation 1 - AiWYX Repairer Actions.

Figure 337: AiWYX vs. UFSC – Simu-
lation 1 - AiWYX Saboteur Actions.

Figure 338: AiWYX vs. UFSC – Simu-
lation 1 - AiWYX Sentinel Actions.

213 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 1

Figure 339: AiWYX vs. UFSC – Simu-
lation 1 - UFSC Explorer Actions.

Figure 340: AiWYX vs. UFSC – Simu-
lation 1 - UFSC Inspector Actions.

Figure 341: AiWYX vs. UFSC – Simu-
lation 1 - UFSC Repairer Actions.

Figure 342: AiWYX vs. UFSC – Simu-
lation 1 - UFSC Saboteur Actions.

Figure 343: AiWYX vs. UFSC – Simu-
lation 1 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 214

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

26 AiWYX vs. UFSC – Simulation 2

26.1 Scores, Zone Stability and Achievements

Figure 344: Summed scores. Figure 345: Achievement points.

Figure 346: Zones scores. Figure 347: Zones scores and achieve-
ment points.

Figure 348: Zone Stabilities.

215 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 2

Step AiWYX UFSC

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, area10, surveyed20
2 area20, surveyed80 surveyed40
3 surveyed80, proved5
4 proved5
5 surveyed160, inspected5
6 proved10, surveyed160, attacked5
7 proved10, attacked5
10 attacked10
11 proved20
13 proved20 inspected5
15 attacked10
16 inspected10
17 area20, attacked20
22 surveyed320
23 surveyed320 inspected10, proved40
26 parried5
28 area40 area40
30 attacked20
34 proved40
36 attacked40
41 parried10
47 proved80
51 parried20
52 attacked80
54 attacked40
69 area80
72 proved80
83 attacked80
99 surveyed640 attacked160
103 proved160
130 proved160
141 attacked160
149 area160
208 attacked320
211 area160, area80
239 attacked320
284 parried40
418 attacked640
466 attacked640

Figure 349: Achievements.

DEPARTMENTOF INFORMATICS 216

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

26.2 Stability

Reason AiWYX % UFSC %

failed away 4 0,03
failed parried 98 0,65
failed random 166 1,11 147 0,98
failed resources 14 0,09

failed 16 0,11
failed attacked 131 0,87 73 0,49
noAction 16 0,11

Figure 350: Failed actions.

217 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 2

26.3 Achievements

Figure 351: areaValueAchievements. Figure 352:
inspectedAgentsAchievements.

Figure 353:
probedVerticesAchievements.

Figure 354:
successfulAttacksAchievements.

Figure 355:
successfulParriesAchievements.

Figure 356:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 218

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

26.4 Actions per Role

Figure 357: AiWYX vs. UFSC – Simu-
lation 2 - AiWYX Explorer Actions.

Figure 358: AiWYX vs. UFSC – Simu-
lation 2 - AiWYX Inspector Actions.

Figure 359: AiWYX vs. UFSC – Simu-
lation 2 - AiWYX Repairer Actions.

Figure 360: AiWYX vs. UFSC – Simu-
lation 2 - AiWYX Saboteur Actions.

Figure 361: AiWYX vs. UFSC – Simu-
lation 2 - AiWYX Sentinel Actions.

219 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 2

Figure 362: AiWYX vs. UFSC – Simu-
lation 2 - UFSC Explorer Actions.

Figure 363: AiWYX vs. UFSC – Simu-
lation 2 - UFSC Inspector Actions.

Figure 364: AiWYX vs. UFSC – Simu-
lation 2 - UFSC Repairer Actions.

Figure 365: AiWYX vs. UFSC – Simu-
lation 2 - UFSC Saboteur Actions.

Figure 366: AiWYX vs. UFSC – Simu-
lation 2 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 220

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

27 AiWYX vs. UFSC – Simulation 3

27.1 Scores, Zone Stability and Achievements

Figure 367: Summed scores. Figure 368: Achievement points.

Figure 369: Zones scores. Figure 370: Zones scores and achieve-
ment points.

Figure 371: Zone Stabilities.

221 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 3

Step AiWYX UFSC

1 surveyed10, surveyed40, surveyed20, inspected5 surveyed10
2 surveyed80 surveyed40, surveyed20, inspected5
3 area10 proved5
4 proved5 inspected10, surveyed80
5 inspected10, surveyed160 area20, proved10, area10
6 attacked5
7 proved10
8 surveyed160
11 proved20
12 parried5, attacked10
13 attacked5
17 proved20, surveyed320
18 attacked20
23 proved40
24 attacked10
26 area20
28 attacked40, parried10
33 attacked20 area40
34 proved40
43 attacked40
48 parried20
49 proved80
62 attacked80
63 area80
69 proved80
86 attacked80
102 parried40
111 proved160
112 attacked160
127 area40
130 area80
136 proved160
149 attacked160
157 parried80
165 surveyed320
189 inspected20
220 attacked320
256 attacked320
367 area160
392 attacked640
445 attacked640

Figure 372: Achievements.

DEPARTMENTOF INFORMATICS 222

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

27.2 Stability

Reason AiWYX % UFSC %

failed away 2 0,01
failed parried 135 0,9
failed random 145 0,97 165 1,1
failed resources 15 0,1

failed 1 0,01 14 0,09
failed attacked 127 0,85 53 0,35
noAction 1 0,01 14 0,09

Figure 373: Failed actions.

223 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 3

27.3 Achievements

Figure 374: areaValueAchievements. Figure 375:
inspectedAgentsAchievements.

Figure 376:
probedVerticesAchievements.

Figure 377:
successfulAttacksAchievements.

Figure 378:
successfulParriesAchievements.

Figure 379:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 224

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

27.4 Actions per Role

Figure 380: AiWYX vs. UFSC – Simu-
lation 3 - AiWYX Explorer Actions.

Figure 381: AiWYX vs. UFSC – Simu-
lation 3 - AiWYX Inspector Actions.

Figure 382: AiWYX vs. UFSC – Simu-
lation 3 - AiWYX Repairer Actions.

Figure 383: AiWYX vs. UFSC – Simu-
lation 3 - AiWYX Saboteur Actions.

Figure 384: AiWYX vs. UFSC – Simu-
lation 3 - AiWYX Sentinel Actions.

225 Technical Report IfI-13-01

AiWYX vs. UFSC – Simulation 3

Figure 385: AiWYX vs. UFSC – Simu-
lation 3 - UFSC Explorer Actions.

Figure 386: AiWYX vs. UFSC – Simu-
lation 3 - UFSC Inspector Actions.

Figure 387: AiWYX vs. UFSC – Simu-
lation 3 - UFSC Repairer Actions.

Figure 388: AiWYX vs. UFSC – Simu-
lation 3 - UFSC Saboteur Actions.

Figure 389: AiWYX vs. UFSC – Simu-
lation 3 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 226

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

28 AiWYX vs. USP – Simulation 1

28.1 Scores, Zone Stability and Achievements

Figure 390: Summed scores. Figure 391: Achievement points.

Figure 392: Zones scores. Figure 393: Zones scores and achieve-
ment points.

Figure 394: Zone Stabilities.

227 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 1

Step USP AiWYX

1 surveyed10, surveyed40, surveyed20
2 surveyed10, surveyed40, surveyed20 surveyed80, area10
3 surveyed80, area10 inspected5
4 proved5
5 proved5 surveyed160
7 area20 proved10
8 proved10, attacked5
10 inspected10
14 surveyed160
15 inspected5 proved20, attacked5
16 surveyed320
17 proved20
19 area40
22 attacked10
23 attacked10
32 proved40
34 inspected20
36 area20
37 area80
40 proved40
43 attacked20
44 parried5
47 attacked20
49 surveyed640
53 parried10
61 proved80
63 attacked40
70 inspected10
77 parried20 area40
89 surveyed320
99 attacked80
102 area80
110 proved160
114 attacked40
115 area160
161 attacked160
199 attacked80
202 parried40
241 inspected20
285 area320
292 attacked320
294 proved80
345 attacked160
346 parried80
531 attacked640
579 parried160
586 attacked320
649 proved160
725 surveyed640

Figure 395: Achievements.

DEPARTMENTOF INFORMATICS 228

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

28.2 Stability

Reason USP % AiWYX %

failed away 311 2,07
failed parried 376 2,51
failed random 162 1,08 151 1,01
failed 368 2,45

failed resources 61 0,41 13 0,09
failed attacked 182 1,21 95 0,63
noAction 372 2,48

Figure 396: Failed actions.

229 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 1

28.3 Achievements

Figure 397: areaValueAchievements. Figure 398:
inspectedAgentsAchievements.

Figure 399:
probedVerticesAchievements.

Figure 400:
successfulAttacksAchievements.

Figure 401:
successfulParriesAchievements.

Figure 402:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 230

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

28.4 Actions per Role

Figure 403: AiWYX vs. USP – Simula-
tion 1 - AiWYX Explorer Actions.

Figure 404: AiWYX vs. USP – Simula-
tion 1 - AiWYX Inspector Actions.

Figure 405: AiWYX vs. USP – Simula-
tion 1 - AiWYX Repairer Actions.

Figure 406: AiWYX vs. USP – Simula-
tion 1 - AiWYX Saboteur Actions.

Figure 407: AiWYX vs. USP – Simula-
tion 1 - AiWYX Sentinel Actions.

231 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 1

Figure 408: AiWYX vs. USP – Simula-
tion 1 - USP Explorer Actions.

Figure 409: AiWYX vs. USP – Simula-
tion 1 - USP Inspector Actions.

Figure 410: AiWYX vs. USP – Simula-
tion 1 - USP Repairer Actions.

Figure 411: AiWYX vs. USP – Simula-
tion 1 - USP Saboteur Actions.

Figure 412: AiWYX vs. USP – Simula-
tion 1 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 232

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

29 AiWYX vs. USP – Simulation 2

29.1 Scores, Zone Stability and Achievements

Figure 413: Summed scores. Figure 414: Achievement points.

Figure 415: Zones scores. Figure 416: Zones scores and achieve-
ment points.

Figure 417: Zone Stabilities.

233 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 2

Step USP AiWYX

1 surveyed10, surveyed40, surveyed20
2 surveyed10, surveyed40, surveyed20 surveyed80
4 proved5 area10, proved5
5 inspected5 surveyed160
6 proved10, surveyed80, area10 inspected5
7 attacked5 proved10
10 area20, attacked5
12 area40, area20, proved20
13 proved20
14 inspected10
18 surveyed320
19 surveyed160
25 attacked10
28 proved40
31 attacked10
36 proved40
44 inspected10
46 parried5
47 area40
50 attacked20
55 attacked20
59 parried10
63 proved80
69 attacked40
75 parried20 surveyed640
85 attacked40
106 attacked80
118 proved160
145 parried40
159 surveyed320
161 attacked160
163 area80
181 attacked80
183 area80
213 proved80
256 area160, area320, area640
264 inspected20
287 attacked320
313 parried80
321 attacked160
450 attacked640
467 inspected20
497 attacked320
696 proved160
728 area160

Figure 418: Achievements.

DEPARTMENTOF INFORMATICS 234

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

29.2 Stability

Reason USP % AiWYX %

failed away 213 1,42
failed parried 187 1,25
failed random 151 1,01 139 0,93
failed 169 1,13 135 0,9

failed resources 25 0,17 15 0,1
failed attacked 98 0,65 91 0,61
noAction 172 1,15 136 0,91

Figure 419: Failed actions.

235 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 2

29.3 Achievements

Figure 420: areaValueAchievements. Figure 421:
inspectedAgentsAchievements.

Figure 422:
probedVerticesAchievements.

Figure 423:
successfulAttacksAchievements.

Figure 424:
successfulParriesAchievements.

Figure 425:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 236

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

29.4 Actions per Role

Figure 426: AiWYX vs. USP – Simula-
tion 2 - AiWYX Explorer Actions.

Figure 427: AiWYX vs. USP – Simula-
tion 2 - AiWYX Inspector Actions.

Figure 428: AiWYX vs. USP – Simula-
tion 2 - AiWYX Repairer Actions.

Figure 429: AiWYX vs. USP – Simula-
tion 2 - AiWYX Saboteur Actions.

Figure 430: AiWYX vs. USP – Simula-
tion 2 - AiWYX Sentinel Actions.

237 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 2

Figure 431: AiWYX vs. USP – Simula-
tion 2 - USP Explorer Actions.

Figure 432: AiWYX vs. USP – Simula-
tion 2 - USP Inspector Actions.

Figure 433: AiWYX vs. USP – Simula-
tion 2 - USP Repairer Actions.

Figure 434: AiWYX vs. USP – Simula-
tion 2 - USP Saboteur Actions.

Figure 435: AiWYX vs. USP – Simula-
tion 2 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 238

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

30 AiWYX vs. USP – Simulation 3

30.1 Scores, Zone Stability and Achievements

Figure 436: Summed scores. Figure 437: Achievement points.

Figure 438: Zones scores. Figure 439: Zones scores and achieve-
ment points.

Figure 440: Zone Stabilities.

239 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 3

Step USP AiWYX

1 area10 surveyed10, surveyed40, area10, surveyed20
2 surveyed10, area20, surveyed20 surveyed80
4 surveyed40, proved5 area20, proved5, inspected5
5 surveyed160
6 proved10
7 inspected5 proved10
9 inspected10
11 surveyed80
12 area40, parried5 attacked5
14 proved20
15 surveyed320
19 proved20
23 attacked10
25 parried10
28 proved40
30 surveyed160
33 attacked5
34 inspected10 inspected20
45 attacked20
48 proved40, attacked10
55 parried20
58 area80
60 attacked40
61 proved80
63 attacked20
85 area40
88 attacked80
92 inspected20
94 area80
100 parried40
114 proved160
133 attacked40
137 area160, area320
162 attacked160
192 proved80
207 attacked80
221 surveyed320
235 parried80
343 attacked320
364 attacked160
453 parried160
493 proved160
633 attacked640
710 attacked320

Figure 441: Achievements.

DEPARTMENTOF INFORMATICS 240

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

30.2 Stability

Reason AiWYX % USP %

failed away 251 1,67
failed parried 450 3
failed random 162 1,08 156 1,04
failed 135 0,9 144 0,96

failed resources 13 0,09 30 0,2
failed attacked 82 0,55 157 1,05
noAction 136 0,91 145 0,97

Figure 442: Failed actions.

241 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 3

30.3 Achievements

Figure 443: areaValueAchievements. Figure 444:
inspectedAgentsAchievements.

Figure 445:
probedVerticesAchievements.

Figure 446:
successfulAttacksAchievements.

Figure 447:
successfulParriesAchievements.

Figure 448:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 242

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

30.4 Actions per Role

Figure 449: AiWYX vs. USP – Simula-
tion 3 - AiWYX Explorer Actions.

Figure 450: AiWYX vs. USP – Simula-
tion 3 - AiWYX Inspector Actions.

Figure 451: AiWYX vs. USP – Simula-
tion 3 - AiWYX Repairer Actions.

Figure 452: AiWYX vs. USP – Simula-
tion 3 - AiWYX Saboteur Actions.

Figure 453: AiWYX vs. USP – Simula-
tion 3 - AiWYX Sentinel Actions.

243 Technical Report IfI-13-01

AiWYX vs. USP – Simulation 3

Figure 454: AiWYX vs. USP – Simula-
tion 3 - USP Explorer Actions.

Figure 455: AiWYX vs. USP – Simula-
tion 3 - USP Inspector Actions.

Figure 456: AiWYX vs. USP – Simula-
tion 3 - USP Repairer Actions.

Figure 457: AiWYX vs. USP – Simula-
tion 3 - USP Saboteur Actions.

Figure 458: AiWYX vs. USP – Simula-
tion 3 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 244

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

31 PGIM vs. Python-DTU – Simulation 1

31.1 Scores, Zone Stability and Achievements

Figure 459: Summed scores. Figure 460: Achievement points.

Figure 461: Zones scores. Figure 462: Zones scores and achieve-
ment points.

Figure 463: Zone Stabilities.

245 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 1

Step PGIM Python-DTU

1 surveyed10, surveyed20 surveyed10, surveyed40, surveyed20
2 surveyed40
3 area10 surveyed80, proved5
5 proved10, area10
6 proved5 inspected5
7 area20 surveyed160
9 inspected5
10 proved20
11 inspected10
13 surveyed80
14 area40
16 proved10
17 surveyed320, attacked5
25 proved40, attacked10
26 proved20
27 area20
29 surveyed160 area40
31 attacked5
37 area80
39 attacked20
42 inspected20
54 proved80
60 inspected10, attacked10
65 area160
67 attacked40
68 surveyed640
86 proved40
101 proved160
104 attacked20
121 attacked80
142 attacked40
214 area320
230 surveyed320
240 attacked160
244 attacked80
281 parried5
309 proved80
400 attacked160
402 attacked320
407 parried10
513 parried5
536 attacked320
587 parried10
660 inspected20
738 attacked640

Figure 464: Achievements.

DEPARTMENTOF INFORMATICS 246

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

31.2 Stability

Reason PGIM % Python-DTU %

failed away 394 2,63 60 0,4
failed parried 15 0,1 24 0,16
failed random 152 1,01 122 0,81

failed wrong param 62 0,41
failed 47 0,31

failed resources 84 0,56
failed attacked 67 0,45 161 1,07
noAction 48 0,32
failed status 1 0,01

Figure 465: Failed actions.

247 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 1

31.3 Achievements

Figure 466: areaValueAchievements. Figure 467:
inspectedAgentsAchievements.

Figure 468:
probedVerticesAchievements.

Figure 469:
successfulAttacksAchievements.

Figure 470:
successfulParriesAchievements.

Figure 471:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 248

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

31.4 Actions per Role

249 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 1

Figure 472: PGIM vs. Python-DTU
– Simulation 1 - PGIM Explorer Ac-
tions.

Figure 473: PGIM vs. Python-DTU
– Simulation 1 - PGIM Inspector Ac-
tions.

Figure 474: PGIM vs. Python-DTU
– Simulation 1 - PGIM Repairer Ac-
tions.

Figure 475: PGIM vs. Python-DTU
– Simulation 1 - PGIM Saboteur Ac-
tions.

Figure 476: PGIM vs. Python-DTU
– Simulation 1 - PGIM Sentinel Ac-
tions.

DEPARTMENTOF INFORMATICS 250

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 477: PGIM vs. Python-DTU –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 478: PGIM vs. Python-DTU –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 479: PGIM vs. Python-DTU –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 480: PGIM vs. Python-DTU –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 481: PGIM vs. Python-DTU –
Simulation 1 - Python-DTU Sentinel
Actions.

251 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 2

32 PGIM vs. Python-DTU – Simulation 2

32.1 Scores, Zone Stability and Achievements

Figure 482: Summed scores. Figure 483: Achievement points.

Figure 484: Zones scores. Figure 485: Zones scores and achieve-
ment points.

Figure 486: Zone Stabilities.

DEPARTMENTOF INFORMATICS 252

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step PGIM Python-DTU

1 surveyed10, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed40
3 proved5 surveyed80, proved5
5 surveyed80 proved10, inspected5
7 proved10
8 area20
9 attacked5
10 inspected10
11 attacked5 proved20, surveyed160
12 area20
15 surveyed160 area40
19 inspected20
20 proved20
21 area40 attacked10
24 surveyed320
26 proved40
29 attacked10
38 attacked20
42 area80
49 attacked20
54 proved80
57 proved40
64 attacked40
68 attacked40
91 surveyed640
95 surveyed320
99 attacked80
101 area160
104 proved160
116 attacked80
187 attacked160
219 attacked160
304 attacked320
342 proved80
468 parried5
482 attacked320
520 attacked640
588 area80
593 proved160
598 parried10
705 parried20 area320, area640

Figure 487: Achievements.

253 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 2

32.2 Stability

Reason PGIM % Python-DTU %

failed away 95 0,63 39 0,26
failed parried 21 0,14
failed random 157 1,05 155 1,03

failed wrong param 19 0,13
failed resources 25 0,17
failed attacked 37 0,25 181 1,21

Figure 488: Failed actions.

DEPARTMENTOF INFORMATICS 254

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

32.3 Achievements

Figure 489: areaValueAchievements. Figure 490:
inspectedAgentsAchievements.

Figure 491:
probedVerticesAchievements.

Figure 492:
successfulAttacksAchievements.

Figure 493:
successfulParriesAchievements.

Figure 494:
surveyedEdgesAchievements.

255 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 2

32.4 Actions per Role

DEPARTMENTOF INFORMATICS 256

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 495: PGIM vs. Python-DTU
– Simulation 2 - PGIM Explorer Ac-
tions.

Figure 496: PGIM vs. Python-DTU
– Simulation 2 - PGIM Inspector Ac-
tions.

Figure 497: PGIM vs. Python-DTU
– Simulation 2 - PGIM Repairer Ac-
tions.

Figure 498: PGIM vs. Python-DTU
– Simulation 2 - PGIM Saboteur Ac-
tions.

Figure 499: PGIM vs. Python-DTU
– Simulation 2 - PGIM Sentinel Ac-
tions.

257 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 2

Figure 500: PGIM vs. Python-DTU –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 501: PGIM vs. Python-DTU –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 502: PGIM vs. Python-DTU –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 503: PGIM vs. Python-DTU –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 504: PGIM vs. Python-DTU –
Simulation 2 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 258

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

33 PGIM vs. Python-DTU – Simulation 3

33.1 Scores, Zone Stability and Achievements

Figure 505: Summed scores. Figure 506: Achievement points.

Figure 507: Zones scores. Figure 508: Zones scores and achieve-
ment points.

Figure 509: Zone Stabilities.

259 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 3

Step PGIM Python-DTU

1 surveyed10, surveyed20 surveyed10, surveyed20, inspected5
2 surveyed40, area10
3 surveyed40, area10, proved5
4 area20 attacked5
5 surveyed80 surveyed80
6 proved5, attacked5
8 inspected10, attacked10
9 proved10
11 proved10 area20
13 surveyed160
16 proved20
19 surveyed160
22 attacked20
25 area40
26 proved20
27 surveyed320, inspected20
33 area80
35 attacked10 proved40
36 area40
40 area160
53 attacked40
63 attacked20 proved80
77 proved40
80 attacked80
83 attacked40
86 surveyed320
111 proved160
147 attacked80
170 attacked160
188 parried5
229 attacked160
396 attacked320
413 attacked320
437 parried10
503 proved80
567 area320, area640
736 parried20
741 attacked640

Figure 510: Achievements.

DEPARTMENTOF INFORMATICS 260

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

33.2 Stability

Reason PGIM % Python-DTU %

failed away 204 1,36 17 0,11
failed parried 23 0,15
failed random 155 1,03 134 0,89

failed wrong param 25 0,17
failed 20 0,13

failed resources 51 0,34
failed attacked 62 0,41 281 1,87
noAction 20 0,13

Figure 511: Failed actions.

261 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 3

33.3 Achievements

Figure 512: areaValueAchievements. Figure 513:
inspectedAgentsAchievements.

Figure 514:
probedVerticesAchievements.

Figure 515:
successfulAttacksAchievements.

Figure 516:
successfulParriesAchievements.

Figure 517:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 262

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

33.4 Actions per Role

263 Technical Report IfI-13-01

PGIM vs. Python-DTU – Simulation 3

Figure 518: PGIM vs. Python-DTU
– Simulation 3 - PGIM Explorer Ac-
tions.

Figure 519: PGIM vs. Python-DTU
– Simulation 3 - PGIM Inspector Ac-
tions.

Figure 520: PGIM vs. Python-DTU
– Simulation 3 - PGIM Repairer Ac-
tions.

Figure 521: PGIM vs. Python-DTU
– Simulation 3 - PGIM Saboteur Ac-
tions.

Figure 522: PGIM vs. Python-DTU
– Simulation 3 - PGIM Sentinel Ac-
tions.

DEPARTMENTOF INFORMATICS 264

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 523: PGIM vs. Python-DTU –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 524: PGIM vs. Python-DTU –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 525: PGIM vs. Python-DTU –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 526: PGIM vs. Python-DTU –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 527: PGIM vs. Python-DTU –
Simulation 3 - Python-DTU Sentinel
Actions.

265 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 1

34 PGIM vs. Streett – Simulation 1

34.1 Scores, Zone Stability and Achievements

Figure 528: Summed scores. Figure 529: Achievement points.

Figure 530: Zones scores. Figure 531: Zones scores and achieve-
ment points.

Figure 532: Zone Stabilities.

DEPARTMENTOF INFORMATICS 266

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step PGIM Streett

1 surveyed10, surveyed20 surveyed10, surveyed40, surveyed20
2 surveyed80, surveyed40 surveyed80
3 area10
4 proved5
5 proved5
6 area20, surveyed160 proved10
9 area10
11 proved10 attacked5
12 proved20
13 surveyed160
15 area20
16 attacked5 attacked10
17 inspected5
21 surveyed320
22 attacked10
23 attacked20
26 proved40
34 inspected5
36 attacked20 inspected10
37 proved20
41 surveyed320
44 attacked40
46 inspected10
48 area40
54 area40
60 attacked40
69 proved80
70 parried5
73 attacked80
90 proved40
97 area80
106 parried10
112 inspected20
126 attacked80
138 attacked160
152 proved160
169 parried20
248 attacked160
259 surveyed640
326 proved80
371 attacked320
630 inspected20

Figure 533: Achievements.

267 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 1

34.2 Stability

Reason PGIM % Streett %

failed away 12 0,08 62 0,41
failed parried 36 0,24

failed wrong param 223 1,49
failed random 143 0,95 136 0,91
failed resources 2 0,01 507 3,38
failed attacked 38 0,25 94 0,63
failed status 1 0,01 3 0,02

Figure 534: Failed actions.

DEPARTMENTOF INFORMATICS 268

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

34.3 Achievements

Figure 535: areaValueAchievements. Figure 536:
inspectedAgentsAchievements.

Figure 537:
probedVerticesAchievements.

Figure 538:
successfulAttacksAchievements.

Figure 539:
successfulParriesAchievements.

Figure 540:
surveyedEdgesAchievements.

269 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 1

34.4 Actions per Role

Figure 541: PGIM vs. Streett – Simula-
tion 1 - PGIM Explorer Actions.

Figure 542: PGIM vs. Streett – Simu-
lation 1 - PGIM Inspector Actions.

Figure 543: PGIM vs. Streett – Simu-
lation 1 - PGIM Repairer Actions.

Figure 544: PGIM vs. Streett – Simu-
lation 1 - PGIM Saboteur Actions.

Figure 545: PGIM vs. Streett – Simu-
lation 1 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 270

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 546: PGIM vs. Streett – Simu-
lation 1 - Streett Explorer Actions.

Figure 547: PGIM vs. Streett – Simula-
tion 1 - Streett Inspector Actions.

Figure 548: PGIM vs. Streett – Simu-
lation 1 - Streett Repairer Actions.

Figure 549: PGIM vs. Streett – Simu-
lation 1 - Streett Saboteur Actions.

Figure 550: PGIM vs. Streett – Simu-
lation 1 - Streett Sentinel Actions.

271 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 2

35 PGIM vs. Streett – Simulation 2

35.1 Scores, Zone Stability and Achievements

Figure 551: Summed scores. Figure 552: Achievement points.

Figure 553: Zones scores. Figure 554: Zones scores and achieve-
ment points.

Figure 555: Zone Stabilities.

DEPARTMENTOF INFORMATICS 272

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step PGIM Streett

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed20, area10
2 surveyed80 surveyed40
3 proved5
4 area20, surveyed80
6 proved10
7 proved5
9 attacked5
11 area20 proved20
12 surveyed160 inspected5
15 surveyed160, attacked10
16 proved10
17 area40
25 attacked5 inspected10, proved40, attacked20
27 area40
32 inspected5 area80
38 proved20
40 attacked10
50 attacked40
53 attacked20
55 proved80
59 inspected10
65 surveyed320
68 area80
69 surveyed320
86 attacked40, proved40
106 attacked80
151 parried5
169 proved160
191 attacked80
212 inspected20
242 proved80
266 area160
586 attacked160

Figure 556: Achievements.

273 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 2

35.2 Stability

Reason PGIM % Streett %

failed away 3 0,02 9 0,06
failed parried 11 0,07
failed random 141 0,94 154 1,03

failed wrong param 131 0,87
failed 62 0,41

failed resources 2 0,01 605 4,03
failed attacked 33 0,22 62 0,41
noAction 62 0,41
failed status 2 0,01 1 0,01

Figure 557: Failed actions.

DEPARTMENTOF INFORMATICS 274

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

35.3 Achievements

Figure 558: areaValueAchievements. Figure 559:
inspectedAgentsAchievements.

Figure 560:
probedVerticesAchievements.

Figure 561:
successfulAttacksAchievements.

Figure 562:
successfulParriesAchievements.

Figure 563:
surveyedEdgesAchievements.

275 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 2

35.4 Actions per Role

Figure 564: PGIM vs. Streett – Simu-
lation 2 - PGIM Explorer Actions.

Figure 565: PGIM vs. Streett – Simu-
lation 2 - PGIM Inspector Actions.

Figure 566: PGIM vs. Streett – Simu-
lation 2 - PGIM Repairer Actions.

Figure 567: PGIM vs. Streett – Simula-
tion 2 - PGIM Saboteur Actions.

Figure 568: PGIM vs. Streett – Simu-
lation 2 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 276

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 569: PGIM vs. Streett – Simu-
lation 2 - Streett Explorer Actions.

Figure 570: PGIM vs. Streett – Simula-
tion 2 - Streett Inspector Actions.

Figure 571: PGIM vs. Streett – Simula-
tion 2 - Streett Repairer Actions.

Figure 572: PGIM vs. Streett – Simula-
tion 2 - Streett Saboteur Actions.

Figure 573: PGIM vs. Streett – Simula-
tion 2 - Streett Sentinel Actions.

277 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 3

36 PGIM vs. Streett – Simulation 3

36.1 Scores, Zone Stability and Achievements

Figure 574: Summed scores. Figure 575: Achievement points.

Figure 576: Zones scores. Figure 577: Zones scores and achieve-
ment points.

Figure 578: Zone Stabilities.

DEPARTMENTOF INFORMATICS 278

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step PGIM Streett

1 surveyed40, surveyed10, area20, surveyed20, area10 surveyed10, area20, surveyed20, area10, inspected5
2 surveyed80 surveyed40
3 proved5
4 proved5 surveyed80
6 proved10
7 proved10 inspected10
9 surveyed160
11 proved20
12 area40
15 proved20 attacked5
17 attacked5
21 surveyed160
22 attacked10
25 attacked10
29 proved40
31 attacked20
44 proved40
47 attacked20
64 attacked40, proved80
95 surveyed320
122 attacked40
138 inspected20
155 surveyed320
164 proved80
169 proved160
231 attacked80
249 area80
314 area160
343 proved160
474 area320

Figure 579: Achievements.

279 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 3

36.2 Stability

Reason PGIM % Streett %

failed away 3 0,02 22 0,15
failed parried 4 0,03
failed random 138 0,92 153 1,02

failed wrong param 19 0,13 1 0,01
failed resources 367 2,45
failed attacked 10 0,07 52 0,35

Figure 580: Failed actions.

DEPARTMENTOF INFORMATICS 280

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

36.3 Achievements

Figure 581: areaValueAchievements. Figure 582:
inspectedAgentsAchievements.

Figure 583:
probedVerticesAchievements.

Figure 584:
successfulAttacksAchievements.

Figure 585:
surveyedEdgesAchievements.

281 Technical Report IfI-13-01

PGIM vs. Streett – Simulation 3

36.4 Actions per Role

Figure 586: PGIM vs. Streett – Simu-
lation 3 - PGIM Explorer Actions.

Figure 587: PGIM vs. Streett – Simula-
tion 3 - PGIM Inspector Actions.

Figure 588: PGIM vs. Streett – Simu-
lation 3 - PGIM Repairer Actions.

Figure 589: PGIM vs. Streett – Simu-
lation 3 - PGIM Saboteur Actions.

Figure 590: PGIM vs. Streett – Simu-
lation 3 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 282

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 591: PGIM vs. Streett – Simula-
tion 3 - Streett Explorer Actions.

Figure 592: PGIM vs. Streett – Simu-
lation 3 - Streett Inspector Actions.

Figure 593: PGIM vs. Streett – Simu-
lation 3 - Streett Repairer Actions.

Figure 594: PGIM vs. Streett – Simu-
lation 3 - Streett Saboteur Actions.

Figure 595: PGIM vs. Streett – Simu-
lation 3 - Streett Sentinel Actions.

283 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 1

37 PGIM vs. TUB – Simulation 1

37.1 Scores, Zone Stability and Achievements

Figure 596: Summed scores. Figure 597: Achievement points.

Figure 598: Zones scores. Figure 599: Zones scores and achieve-
ment points.

Figure 600: Zone Stabilities.

DEPARTMENTOF INFORMATICS 284

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB PGIM

1 area10 surveyed10
2 surveyed40, surveyed20
3 surveyed80, area10
5 area40, area20, proved5
7 surveyed160
8 proved10
16 proved20
17 surveyed10, surveyed40, surveyed20
18 area20
20 surveyed80, attacked5, inspected5
23 inspected10, proved5
26 area40, attacked10
27 inspected5
28 proved10
32 surveyed160
33 attacked20
36 inspected10
39 attacked5
42 proved40
43 proved20, inspected20
51 surveyed320
53 attacked40
55 attacked10
57 area80
67 attacked20
79 attacked80
82 proved40
93 attacked40
117 area80
134 proved80
136 attacked80
154 area160
157 attacked160
226 parried5
267 parried10, attacked160
277 attacked320
308 surveyed320
310 proved80
346 parried20
468 attacked320
498 proved160
631 attacked640
636 proved160
662 parried40

Figure 601: Achievements.

285 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 1

37.2 Stability

Reason TUB % PGIM %

failed away 1 0,01 14 0,09
failed parried 59 0,39

failed wrong param 425 2,83 196 1,31
failed random 158 1,05 152 1,01
failed resources 1 0,01 3 0,02

failed 725 4,83
failed attacked 108 0,72 68 0,45
noAction 731 4,87
failed status 2 0,01

Figure 602: Failed actions.

DEPARTMENTOF INFORMATICS 286

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

37.3 Achievements

Figure 603: areaValueAchievements. Figure 604:
inspectedAgentsAchievements.

Figure 605:
probedVerticesAchievements.

Figure 606:
successfulAttacksAchievements.

Figure 607:
successfulParriesAchievements.

Figure 608:
surveyedEdgesAchievements.

287 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 1

37.4 Actions per Role

Figure 609: PGIM vs. TUB – Simula-
tion 1 - PGIM Explorer Actions.

Figure 610: PGIM vs. TUB – Simula-
tion 1 - PGIM Inspector Actions.

Figure 611: PGIM vs. TUB – Simula-
tion 1 - PGIM Repairer Actions.

Figure 612: PGIM vs. TUB – Simula-
tion 1 - PGIM Saboteur Actions.

Figure 613: PGIM vs. TUB – Simula-
tion 1 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 288

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 614: PGIM vs. TUB – Simula-
tion 1 - TUB Explorer Actions.

Figure 615: PGIM vs. TUB – Simula-
tion 1 - TUB Inspector Actions.

Figure 616: PGIM vs. TUB – Simula-
tion 1 - TUB Repairer Actions.

Figure 617: PGIM vs. TUB – Simula-
tion 1 - TUB Saboteur Actions.

Figure 618: PGIM vs. TUB – Simula-
tion 1 - TUB Sentinel Actions.

289 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 2

38 PGIM vs. TUB – Simulation 2

38.1 Scores, Zone Stability and Achievements

Figure 619: Summed scores. Figure 620: Achievement points.

Figure 621: Zones scores. Figure 622: Zones scores and achieve-
ment points.

Figure 623: Zone Stabilities.

DEPARTMENTOF INFORMATICS 290

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB PGIM

1 surveyed10, surveyed80, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 surveyed80
4 area40, area20, proved5 proved5
5 area20, surveyed160
7 inspected5
8 proved10, surveyed160, attacked5 proved10
10 inspected10
12 area80
14 area40
15 attacked10
17 proved20, surveyed320
21 proved20
22 inspected5
27 attacked20
28 attacked5
34 surveyed320
35 inspected20
41 attacked10
47 attacked40
51 proved40
55 proved40
60 attacked20
69 area160
77 attacked80
102 parried5
110 proved80
114 attacked40
139 attacked160
145 parried10
200 attacked80
205 area80
225 proved80
273 attacked320
275 proved160
302 parried20
408 attacked160
534 attacked640
538 parried40
561 proved160
723 attacked320

Figure 624: Achievements.

291 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 2

38.2 Stability

Reason TUB % PGIM %

failed away 1 0,01 14 0,09
failed parried 84 0,56
failed random 148 0,99 153 1,02

failed wrong param 2 0,01 53 0,35
failed attacked 42 0,28 68 0,45

Figure 625: Failed actions.

DEPARTMENTOF INFORMATICS 292

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

38.3 Achievements

Figure 626: areaValueAchievements. Figure 627:
inspectedAgentsAchievements.

Figure 628:
probedVerticesAchievements.

Figure 629:
successfulAttacksAchievements.

Figure 630:
successfulParriesAchievements.

Figure 631:
surveyedEdgesAchievements.

293 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 2

38.4 Actions per Role

Figure 632: PGIM vs. TUB – Simula-
tion 2 - PGIM Explorer Actions.

Figure 633: PGIM vs. TUB – Simula-
tion 2 - PGIM Inspector Actions.

Figure 634: PGIM vs. TUB – Simula-
tion 2 - PGIM Repairer Actions.

Figure 635: PGIM vs. TUB – Simula-
tion 2 - PGIM Saboteur Actions.

Figure 636: PGIM vs. TUB – Simula-
tion 2 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 294

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 637: PGIM vs. TUB – Simula-
tion 2 - TUB Explorer Actions.

Figure 638: PGIM vs. TUB – Simula-
tion 2 - TUB Inspector Actions.

Figure 639: PGIM vs. TUB – Simula-
tion 2 - TUB Repairer Actions.

Figure 640: PGIM vs. TUB – Simula-
tion 2 - TUB Saboteur Actions.

Figure 641: PGIM vs. TUB – Simula-
tion 2 - TUB Sentinel Actions.

295 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 3

39 PGIM vs. TUB – Simulation 3

39.1 Scores, Zone Stability and Achievements

Figure 642: Summed scores. Figure 643: Achievement points.

Figure 644: Zones scores. Figure 645: Zones scores and achieve-
ment points.

Figure 646: Zone Stabilities.

DEPARTMENTOF INFORMATICS 296

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB PGIM

1 surveyed10, surveyed40, surveyed20 surveyed40, surveyed10, surveyed20
2 surveyed80, area10 surveyed80
3 inspected5 area10
4 proved5 area20, proved5
5 area20 surveyed160
7 proved10
8 proved10, surveyed160
15 proved20
16 attacked5
17 inspected10
18 proved20
25 attacked5
26 attacked10
27 area40
32 surveyed320
33 attacked10
36 proved40
41 attacked20, area80
42 attacked20
46 proved40
71 attacked40
72 attacked40
105 proved80
123 proved80
126 attacked80
144 attacked80
199 parried5
218 inspected20
243 attacked160
245 surveyed320
246 attacked160
385 attacked320
409 parried10
498 parried20
546 area160
592 attacked320
607 attacked640
628 proved160

Figure 647: Achievements.

297 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 3

39.2 Stability

Reason TUB % PGIM %

failed away 5 0,03 11 0,07
failed parried 42 0,28
failed random 153 1,02 168 1,12

failed wrong param 358 2,39 55 0,37
failed 404 2,69

failed resources 7 0,05 3 0,02
failed attacked 82 0,55 49 0,33
noAction 411 2,74

Figure 648: Failed actions.

DEPARTMENTOF INFORMATICS 298

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

39.3 Achievements

Figure 649: areaValueAchievements. Figure 650:
inspectedAgentsAchievements.

Figure 651:
probedVerticesAchievements.

Figure 652:
successfulAttacksAchievements.

Figure 653:
successfulParriesAchievements.

Figure 654:
surveyedEdgesAchievements.

299 Technical Report IfI-13-01

PGIM vs. TUB – Simulation 3

39.4 Actions per Role

Figure 655: PGIM vs. TUB – Simula-
tion 3 - PGIM Explorer Actions.

Figure 656: PGIM vs. TUB – Simula-
tion 3 - PGIM Inspector Actions.

Figure 657: PGIM vs. TUB – Simula-
tion 3 - PGIM Repairer Actions.

Figure 658: PGIM vs. TUB – Simula-
tion 3 - PGIM Saboteur Actions.

Figure 659: PGIM vs. TUB – Simula-
tion 3 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 300

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 660: PGIM vs. TUB – Simula-
tion 3 - TUB Explorer Actions.

Figure 661: PGIM vs. TUB – Simula-
tion 3 - TUB Inspector Actions.

Figure 662: PGIM vs. TUB – Simula-
tion 3 - TUB Repairer Actions.

Figure 663: PGIM vs. TUB – Simula-
tion 3 - TUB Saboteur Actions.

Figure 664: PGIM vs. TUB – Simula-
tion 3 - TUB Sentinel Actions.

301 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 1

40 PGIM vs. UFSC – Simulation 1

40.1 Scores, Zone Stability and Achievements

Figure 665: Summed scores. Figure 666: Achievement points.

Figure 667: Zones scores. Figure 668: Zones scores and achieve-
ment points.

Figure 669: Zone Stabilities.

DEPARTMENTOF INFORMATICS 302

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC PGIM

1 surveyed10, area20, surveyed40, area10, surveyed20 surveyed10, area10
3 surveyed80, proved5 surveyed20
4 area20, proved5
5 proved10, surveyed160
7 area40
9 proved20 area40
12 surveyed40
14 attacked5
15 surveyed320
18 attacked10 proved10
20 inspected5
21 proved40
23 area80 surveyed80
26 attacked20
28 inspected5
39 area160
45 proved80
47 proved20
51 attacked40
67 surveyed160
90 inspected10
96 proved160
110 proved40
136 area320
168 surveyed320
173 attacked5
233 attacked80
251 attacked10, proved80
336 attacked20
382 attacked40
447 area80
519 inspected10
588 parried5
594 area640
624 attacked160

Figure 670: Achievements.

303 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 1

40.2 Stability

Reason UFSC % PGIM %

failed away 1625 10,83
failed parried 5 0,03
failed random 151 1,01 163 1,09

failed wrong param 10 0,07
failed 3 0,02

failed resources 24 0,16
failed attacked 9 0,06 57 0,38
noAction 3 0,02
failed status 535 3,57

Figure 671: Failed actions.

DEPARTMENTOF INFORMATICS 304

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

40.3 Achievements

Figure 672: areaValueAchievements. Figure 673:
inspectedAgentsAchievements.

Figure 674:
probedVerticesAchievements.

Figure 675:
successfulAttacksAchievements.

Figure 676:
successfulParriesAchievements.

Figure 677:
surveyedEdgesAchievements.

305 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 1

40.4 Actions per Role

Figure 678: PGIM vs. UFSC – Simula-
tion 1 - PGIM Explorer Actions.

Figure 679: PGIM vs. UFSC – Simula-
tion 1 - PGIM Inspector Actions.

Figure 680: PGIM vs. UFSC – Simula-
tion 1 - PGIM Repairer Actions.

Figure 681: PGIM vs. UFSC – Simula-
tion 1 - PGIM Saboteur Actions.

Figure 682: PGIM vs. UFSC – Simula-
tion 1 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 306

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 683: PGIM vs. UFSC – Simula-
tion 1 - UFSC Explorer Actions.

Figure 684: PGIM vs. UFSC – Simula-
tion 1 - UFSC Inspector Actions.

Figure 685: PGIM vs. UFSC – Simula-
tion 1 - UFSC Repairer Actions.

Figure 686: PGIM vs. UFSC – Simula-
tion 1 - UFSC Saboteur Actions.

Figure 687: PGIM vs. UFSC – Simula-
tion 1 - UFSC Sentinel Actions.

307 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 2

41 PGIM vs. UFSC – Simulation 2

41.1 Scores, Zone Stability and Achievements

Figure 688: Summed scores. Figure 689: Achievement points.

Figure 690: Zones scores. Figure 691: Zones scores and achieve-
ment points.

Figure 692: Zone Stabilities.

DEPARTMENTOF INFORMATICS 308

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC PGIM

1 area10 surveyed10
2 surveyed10, surveyed40, surveyed20 area10, surveyed20
3 proved5
4 surveyed80 area20
5 proved10, attacked5
7 surveyed160
10 proved20 surveyed40
12 inspected5
14 attacked10 proved5
16 surveyed320
20 area20
22 proved40 proved10
24 surveyed80
28 attacked20
32 attacked5
37 inspected5
42 area40
46 proved80
49 inspected10
50 surveyed160
51 attacked40
63 parried5
65 area80 attacked10
87 proved20
96 attacked20
114 proved160
120 attacked80
123 attacked40
128 proved40
155 attacked80
171 inspected10
179 attacked160
208 attacked160
211 parried10
219 parried5
302 parried10
306 surveyed320
323 attacked320
326 area160
364 proved80
380 parried20
449 attacked320
459 inspected20
471 parried20
573 attacked640
686 parried40

Figure 693: Achievements.

309 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 2

41.2 Stability

Reason UFSC % PGIM %

failed away 164 1,09
failed parried 49 0,33 27 0,18
failed random 151 1,01 151 1,01

failed wrong param 78 0,52
failed resources 64 0,43

failed 25 0,17
failed attacked 160 1,07 49 0,33
noAction 25 0,17

Figure 694: Failed actions.

DEPARTMENTOF INFORMATICS 310

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

41.3 Achievements

Figure 695: areaValueAchievements. Figure 696:
inspectedAgentsAchievements.

Figure 697:
probedVerticesAchievements.

Figure 698:
successfulAttacksAchievements.

Figure 699:
successfulParriesAchievements.

Figure 700:
surveyedEdgesAchievements.

311 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 2

41.4 Actions per Role

Figure 701: PGIM vs. UFSC – Simula-
tion 2 - PGIM Explorer Actions.

Figure 702: PGIM vs. UFSC – Simula-
tion 2 - PGIM Inspector Actions.

Figure 703: PGIM vs. UFSC – Simula-
tion 2 - PGIM Repairer Actions.

Figure 704: PGIM vs. UFSC – Simula-
tion 2 - PGIM Saboteur Actions.

Figure 705: PGIM vs. UFSC – Simula-
tion 2 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 312

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 706: PGIM vs. UFSC – Simula-
tion 2 - UFSC Explorer Actions.

Figure 707: PGIM vs. UFSC – Simula-
tion 2 - UFSC Inspector Actions.

Figure 708: PGIM vs. UFSC – Simula-
tion 2 - UFSC Repairer Actions.

Figure 709: PGIM vs. UFSC – Simula-
tion 2 - UFSC Saboteur Actions.

Figure 710: PGIM vs. UFSC – Simula-
tion 2 - UFSC Sentinel Actions.

313 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 3

42 PGIM vs. UFSC – Simulation 3

42.1 Scores, Zone Stability and Achievements

Figure 711: Summed scores. Figure 712: Achievement points.

Figure 713: Zones scores. Figure 714: Zones scores and achieve-
ment points.

Figure 715: Zone Stabilities.

DEPARTMENTOF INFORMATICS 314

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC PGIM

1 surveyed10, surveyed20 surveyed10, surveyed20
2 surveyed40, inspected5 area10
3 inspected10, proved5 area20
4 surveyed80, area10
5 proved10, attacked5
8 surveyed160
11 proved20, attacked10
18 area20, attacked20
19 area40 proved5
23 proved40, surveyed320
28 surveyed40
29 proved10
34 surveyed80
47 attacked5
48 proved80
53 attacked40 attacked10
54 proved20
59 area80
60 attacked20
71 attacked40
73 surveyed160
79 attacked80
90 parried5
92 attacked80
111 parried10
113 proved40
125 proved160
142 attacked160
173 attacked160
195 parried20
255 parried5
269 parried10
302 attacked320
306 attacked320
336 parried20
418 area160
436 proved80
462 attacked640
520 inspected20
550 parried40
564 attacked640
737 surveyed320

Figure 716: Achievements.

315 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 3

42.2 Stability

Reason UFSC % PGIM %

failed away 116 0,77
failed parried 48 0,32 39 0,26
failed random 153 1,02 137 0,91

failed wrong param 68 0,45
failed resources 6 0,04 73 0,49

failed 9 0,06 77 0,51
failed attacked 218 1,45 76 0,51
noAction 9 0,06 78 0,52
failed status 1 0,01

Figure 717: Failed actions.

DEPARTMENTOF INFORMATICS 316

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

42.3 Achievements

Figure 718: areaValueAchievements. Figure 719:
inspectedAgentsAchievements.

Figure 720:
probedVerticesAchievements.

Figure 721:
successfulAttacksAchievements.

Figure 722:
successfulParriesAchievements.

Figure 723:
surveyedEdgesAchievements.

317 Technical Report IfI-13-01

PGIM vs. UFSC – Simulation 3

42.4 Actions per Role

Figure 724: PGIM vs. UFSC – Simula-
tion 3 - PGIM Explorer Actions.

Figure 725: PGIM vs. UFSC – Simula-
tion 3 - PGIM Inspector Actions.

Figure 726: PGIM vs. UFSC – Simula-
tion 3 - PGIM Repairer Actions.

Figure 727: PGIM vs. UFSC – Simula-
tion 3 - PGIM Saboteur Actions.

Figure 728: PGIM vs. UFSC – Simula-
tion 3 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 318

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 729: PGIM vs. UFSC – Simula-
tion 3 - UFSC Explorer Actions.

Figure 730: PGIM vs. UFSC – Simula-
tion 3 - UFSC Inspector Actions.

Figure 731: PGIM vs. UFSC – Simula-
tion 3 - UFSC Repairer Actions.

Figure 732: PGIM vs. UFSC – Simula-
tion 3 - UFSC Saboteur Actions.

Figure 733: PGIM vs. UFSC – Simula-
tion 3 - UFSC Sentinel Actions.

319 Technical Report IfI-13-01

PGIM vs. USP – Simulation 1

43 PGIM vs. USP – Simulation 1

43.1 Scores, Zone Stability and Achievements

Figure 734: Summed scores. Figure 735: Achievement points.

Figure 736: Zones scores. Figure 737: Zones scores and achieve-
ment points.

Figure 738: Zone Stabilities.

DEPARTMENTOF INFORMATICS 320

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP PGIM

1 area10 surveyed40, surveyed10, surveyed20, area10
2 surveyed10, surveyed20 surveyed80
3 area20
4 area20, surveyed40, proved5 proved5
6 proved10
7 proved10
8 area40 surveyed160
9 surveyed80
10 area40
13 inspected5
16 proved20, area80 proved20
18 area80
25 inspected5
26 surveyed160
27 surveyed320
31 attacked5 attacked5
33 inspected10
35 proved40
43 attacked10
44 proved40
46 inspected10
49 attacked10
63 attacked20
70 area160
78 attacked20
95 surveyed320
102 parried5
117 proved80
126 area160
144 attacked40
182 attacked40
221 parried10
225 proved80
522 parried20
537 attacked80
577 proved160

Figure 739: Achievements.

321 Technical Report IfI-13-01

PGIM vs. USP – Simulation 1

43.2 Stability

Reason USP % PGIM %

failed away 15 0,1 2 0,01
failed parried 2 0,01 23 0,15
failed random 141 0,94 151 1,01

failed wrong param 10 0,07
failed resources 71 0,47
failed attacked 22 0,15 7 0,05

Figure 740: Failed actions.

DEPARTMENTOF INFORMATICS 322

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

43.3 Achievements

Figure 741: areaValueAchievements. Figure 742:
inspectedAgentsAchievements.

Figure 743:
probedVerticesAchievements.

Figure 744:
successfulAttacksAchievements.

Figure 745:
successfulParriesAchievements.

Figure 746:
surveyedEdgesAchievements.

323 Technical Report IfI-13-01

PGIM vs. USP – Simulation 1

43.4 Actions per Role

Figure 747: PGIM vs. USP – Simula-
tion 1 - PGIM Explorer Actions.

Figure 748: PGIM vs. USP – Simula-
tion 1 - PGIM Inspector Actions.

Figure 749: PGIM vs. USP – Simula-
tion 1 - PGIM Repairer Actions.

Figure 750: PGIM vs. USP – Simula-
tion 1 - PGIM Saboteur Actions.

Figure 751: PGIM vs. USP – Simula-
tion 1 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 324

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 752: PGIM vs. USP – Simula-
tion 1 - USP Explorer Actions.

Figure 753: PGIM vs. USP – Simula-
tion 1 - USP Inspector Actions.

Figure 754: PGIM vs. USP – Simula-
tion 1 - USP Repairer Actions.

Figure 755: PGIM vs. USP – Simula-
tion 1 - USP Saboteur Actions.

Figure 756: PGIM vs. USP – Simula-
tion 1 - USP Sentinel Actions.

325 Technical Report IfI-13-01

PGIM vs. USP – Simulation 2

44 PGIM vs. USP – Simulation 2

44.1 Scores, Zone Stability and Achievements

Figure 757: Summed scores. Figure 758: Achievement points.

Figure 759: Zones scores. Figure 760: Zones scores and achieve-
ment points.

Figure 761: Zone Stabilities.

DEPARTMENTOF INFORMATICS 326

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP PGIM

1 surveyed10, surveyed40, area10, surveyed20
2 surveyed10, area10, surveyed20 surveyed80
3 surveyed40
4 proved5 surveyed160, proved5
6 proved10
7 surveyed80 proved10
13 proved20
16 area20 surveyed320
17 proved20
18 inspected5
19 surveyed160
20 attacked5 attacked5
21 area40
23 inspected5
24 area20
26 area80
27 area40
28 proved40
34 inspected10
36 proved40
47 attacked10
48 attacked10
55 area80
65 area160
67 parried5
77 attacked20
86 surveyed320
93 attacked20
102 proved80
103 parried10
105 attacked40
147 parried20
170 proved80
250 attacked40
302 area160
443 parried40
458 attacked80
471 proved160
504 proved160
567 attacked80
647 inspected10
676 parried80
709 attacked160

Figure 762: Achievements.

327 Technical Report IfI-13-01

PGIM vs. USP – Simulation 2

44.2 Stability

Reason USP % PGIM %

failed away 54 0,36 5 0,03
failed parried 2 0,01 102 0,68
failed random 145 0,97 162 1,08

failed wrong param 8 0,05
failed resources 64 0,43
failed attacked 67 0,45 22 0,15

Figure 763: Failed actions.

DEPARTMENTOF INFORMATICS 328

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

44.3 Achievements

Figure 764: areaValueAchievements. Figure 765:
inspectedAgentsAchievements.

Figure 766:
probedVerticesAchievements.

Figure 767:
successfulAttacksAchievements.

Figure 768:
successfulParriesAchievements.

Figure 769:
surveyedEdgesAchievements.

329 Technical Report IfI-13-01

PGIM vs. USP – Simulation 2

44.4 Actions per Role

Figure 770: PGIM vs. USP – Simula-
tion 2 - PGIM Explorer Actions.

Figure 771: PGIM vs. USP – Simula-
tion 2 - PGIM Inspector Actions.

Figure 772: PGIM vs. USP – Simula-
tion 2 - PGIM Repairer Actions.

Figure 773: PGIM vs. USP – Simula-
tion 2 - PGIM Saboteur Actions.

Figure 774: PGIM vs. USP – Simula-
tion 2 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 330

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 775: PGIM vs. USP – Simula-
tion 2 - USP Explorer Actions.

Figure 776: PGIM vs. USP – Simula-
tion 2 - USP Inspector Actions.

Figure 777: PGIM vs. USP – Simula-
tion 2 - USP Repairer Actions.

Figure 778: PGIM vs. USP – Simula-
tion 2 - USP Saboteur Actions.

Figure 779: PGIM vs. USP – Simula-
tion 2 - USP Sentinel Actions.

331 Technical Report IfI-13-01

PGIM vs. USP – Simulation 3

45 PGIM vs. USP – Simulation 3

45.1 Scores, Zone Stability and Achievements

Figure 780: Summed scores. Figure 781: Achievement points.

Figure 782: Zones scores. Figure 783: Zones scores and achieve-
ment points.

Figure 784: Zone Stabilities.

DEPARTMENTOF INFORMATICS 332

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP PGIM

1 surveyed10, surveyed40, surveyed20
2 surveyed10, surveyed40, surveyed20 surveyed80
4 proved5 proved5
5 surveyed80 area10
6 surveyed160
7 proved10 proved10
8 area10
9 area20
10 inspected5
11 area20
13 proved20
16 inspected10, attacked5
18 proved20
22 surveyed160
23 attacked10
31 attacked20
33 inspected5
36 area40, proved40
37 attacked5
41 inspected10
42 inspected20 proved40
51 attacked10
58 attacked40
60 inspected20
64 parried5
80 area40
81 parried10
82 attacked20
90 parried20
105 surveyed320
109 attacked40
127 area80
129 proved80
138 parried40
151 attacked80
152 surveyed320
180 proved80
203 attacked80
227 area80
288 attacked160
322 parried5
326 parried80
333 attacked160
432 area160
457 parried10
504 proved160
549 proved160
557 attacked320
653 parried160
654 attacked320

Figure 785: Achievements.

333 Technical Report IfI-13-01

PGIM vs. USP – Simulation 3

45.2 Stability

Reason USP % PGIM %

failed away 143 0,95 12 0,08
failed parried 17 0,11 173 1,15
failed random 146 0,97 171 1,14

failed wrong param 26 0,17
failed 140 0,93

failed resources 40 0,27
failed attacked 178 1,19 69 0,46
noAction 140 0,93

Figure 786: Failed actions.

DEPARTMENTOF INFORMATICS 334

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

45.3 Achievements

Figure 787: areaValueAchievements. Figure 788:
inspectedAgentsAchievements.

Figure 789:
probedVerticesAchievements.

Figure 790:
successfulAttacksAchievements.

Figure 791:
successfulParriesAchievements.

Figure 792:
surveyedEdgesAchievements.

335 Technical Report IfI-13-01

PGIM vs. USP – Simulation 3

45.4 Actions per Role

Figure 793: PGIM vs. USP – Simula-
tion 3 - PGIM Explorer Actions.

Figure 794: PGIM vs. USP – Simula-
tion 3 - PGIM Inspector Actions.

Figure 795: PGIM vs. USP – Simula-
tion 3 - PGIM Repairer Actions.

Figure 796: PGIM vs. USP – Simula-
tion 3 - PGIM Saboteur Actions.

Figure 797: PGIM vs. USP – Simula-
tion 3 - PGIM Sentinel Actions.

DEPARTMENTOF INFORMATICS 336

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 798: PGIM vs. USP – Simula-
tion 3 - USP Explorer Actions.

Figure 799: PGIM vs. USP – Simula-
tion 3 - USP Inspector Actions.

Figure 800: PGIM vs. USP – Simula-
tion 3 - USP Repairer Actions.

Figure 801: PGIM vs. USP – Simula-
tion 3 - USP Saboteur Actions.

Figure 802: PGIM vs. USP – Simula-
tion 3 - USP Sentinel Actions.

337 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 1

46 Python-DTU vs. UFSC – Simulation 1

46.1 Scores, Zone Stability and Achievements

Figure 803: Summed scores. Figure 804: Achievement points.

Figure 805: Zones scores. Figure 806: Zones scores and achieve-
ment points.

Figure 807: Zone Stabilities.

DEPARTMENTOF INFORMATICS 338

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC Python-DTU

1 surveyed10, surveyed40, surveyed20 surveyed10, surveyed40, area10, surveyed20
2 area10
3 surveyed80, proved5 proved5
5 proved10, surveyed160 proved10, surveyed80
7 area20
9 proved20
10 area20, attacked5 proved20, attacked5
11 surveyed160
19 parried5 area40
21 proved40
22 area40
23 surveyed320, area80 proved40
26 area80
29 attacked10, inspected5
30 surveyed320
32 attacked10
33 inspected5 inspected10
38 parried10
41 attacked20
45 inspected10
50 proved80
51 attacked20
52 attacked40 proved80
68 parried20
80 attacked40
81 attacked80
96 surveyed640
103 proved160
110 attacked80
111 proved160
126 parried5
127 attacked160
132 parried10
145 parried40 parried20
166 area160
179 parried40
186 attacked160
215 inspected20
241 parried80
245 attacked320
259 parried80
268 area160
306 attacked320
396 attacked640
490 parried160
521 parried160
568 attacked640

Figure 808: Achievements.

339 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 1

46.2 Stability

Reason UFSC % Python-DTU %

failed away 11 0,07 2 0,01
failed parried 221 1,47 266 1,77
failed random 148 0,99 143 0,95
failed 3 0,02

failed resources 3 0,02
failed attacked 86 0,57 235 1,57
noAction 3 0,02

Figure 809: Failed actions.

DEPARTMENTOF INFORMATICS 340

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

46.3 Achievements

Figure 810: areaValueAchievements. Figure 811:
inspectedAgentsAchievements.

Figure 812:
probedVerticesAchievements.

Figure 813:
successfulAttacksAchievements.

Figure 814:
successfulParriesAchievements.

Figure 815:
surveyedEdgesAchievements.

341 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 1

46.4 Actions per Role

DEPARTMENTOF INFORMATICS 342

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 816: Python-DTU vs. UFSC –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 817: Python-DTU vs. UFSC –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 818: Python-DTU vs. UFSC –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 819: Python-DTU vs. UFSC –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 820: Python-DTU vs. UFSC –
Simulation 1 - Python-DTU Sentinel
Actions.

343 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 1

Figure 821: Python-DTU vs. UFSC
– Simulation 1 - UFSC Explorer Ac-
tions.

Figure 822: Python-DTU vs. UFSC
– Simulation 1 - UFSC Inspector Ac-
tions.

Figure 823: Python-DTU vs. UFSC –
Simulation 1 -UFSCRepairer Actions.

Figure 824: Python-DTU vs. UFSC
– Simulation 1 - UFSC Saboteur Ac-
tions.

Figure 825: Python-DTU vs. UFSC –
Simulation 1 -UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 344

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

47 Python-DTU vs. UFSC – Simulation 2

47.1 Scores, Zone Stability and Achievements

Figure 826: Summed scores. Figure 827: Achievement points.

Figure 828: Zones scores. Figure 829: Zones scores and achieve-
ment points.

Figure 830: Zone Stabilities.

345 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 2

Step UFSC Python-DTU

1 surveyed10, surveyed20 surveyed10, surveyed20
2 surveyed40, inspected5 surveyed40
3 area10, proved5 proved5, inspected5
4 surveyed80
5 proved10 proved10, surveyed80, attacked5
7 inspected10
8 attacked5
9 inspected10, surveyed160
10 area10
11 proved20 proved20, attacked10
12 parried5
14 surveyed160
15 attacked10
19 parried10 area20
23 proved40
24 attacked20 attacked20
28 surveyed320
30 proved40, inspected20
32 area20
34 area40
42 surveyed320
43 attacked40
49 proved80
52 parried20
55 attacked40
60 area80
61 area40
63 proved80
69 attacked80, area80
93 attacked80
112 proved160
115 inspected20
119 proved160
147 attacked160
174 parried40
182 parried5
183 attacked160
190 parried10
202 parried20
224 parried80
264 attacked320
273 parried40
348 area160
367 attacked320
376 parried80
471 attacked640
565 attacked640
701 parried160
719 parried160

Figure 831: Achievements.

DEPARTMENTOF INFORMATICS 346

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

47.2 Stability

Reason UFSC % Python-DTU %

failed away 10 0,07
failed parried 168 1,12 163 1,09
failed random 152 1,01 161 1,07
failed resources 2 0,01

failed 13 0,09
failed attacked 68 0,45 206 1,37
noAction 13 0,09

Figure 832: Failed actions.

347 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 2

47.3 Achievements

Figure 833: areaValueAchievements. Figure 834:
inspectedAgentsAchievements.

Figure 835:
probedVerticesAchievements.

Figure 836:
successfulAttacksAchievements.

Figure 837:
successfulParriesAchievements.

Figure 838:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 348

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

47.4 Actions per Role

349 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 2

Figure 839: Python-DTU vs. UFSC –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 840: Python-DTU vs. UFSC –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 841: Python-DTU vs. UFSC –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 842: Python-DTU vs. UFSC –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 843: Python-DTU vs. UFSC –
Simulation 2 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 350

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 844: Python-DTU vs. UFSC
– Simulation 2 - UFSC Explorer Ac-
tions.

Figure 845: Python-DTU vs. UFSC
– Simulation 2 - UFSC Inspector Ac-
tions.

Figure 846: Python-DTU vs. UFSC –
Simulation 2 -UFSCRepairer Actions.

Figure 847: Python-DTU vs. UFSC
– Simulation 2 - UFSC Saboteur Ac-
tions.

Figure 848: Python-DTU vs. UFSC –
Simulation 2 -UFSC Sentinel Actions.

351 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 3

48 Python-DTU vs. UFSC – Simulation 3

48.1 Scores, Zone Stability and Achievements

Figure 849: Summed scores. Figure 850: Achievement points.

Figure 851: Zones scores. Figure 852: Zones scores and achieve-
ment points.

Figure 853: Zone Stabilities.

DEPARTMENTOF INFORMATICS 352

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC Python-DTU

1 surveyed10, area20, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
3 surveyed80, proved5 proved5
4 inspected5
5 proved10, inspected5 proved10, surveyed80
7 surveyed160 area20, attacked5
8 attacked5
9 proved20
11 attacked10 proved20
13 inspected10, attacked10
16 inspected10 surveyed160
18 attacked20
21 area40
22 attacked20
23 area40, proved40
27 surveyed320
29 proved40
30 attacked40 area80
32 parried5 inspected20
37 area80
38 attacked40
51 attacked80, proved80 surveyed320
52 inspected20
54 parried10
57 proved80
66 area160
85 parried20
88 attacked80
98 attacked160
112 proved160
119 parried5
123 proved160
124 parried40
146 parried10
162 parried20
168 area160
169 attacked320
184 attacked160
197 parried40
199 parried80
266 parried80
320 attacked320
337 parried160
384 attacked640
398 parried160
564 parried320
603 parried320
624 attacked640

Figure 854: Achievements.

353 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 3

48.2 Stability

Reason UFSC % Python-DTU %

failed away 14 0,09 1 0,01
failed parried 404 2,69 445 2,97
failed random 129 0,86 153 1,02
failed resources 8 0,05

failed 17 0,11
failed attacked 104 0,69 310 2,07
noAction 17 0,11

Figure 855: Failed actions.

DEPARTMENTOF INFORMATICS 354

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

48.3 Achievements

Figure 856: areaValueAchievements. Figure 857:
inspectedAgentsAchievements.

Figure 858:
probedVerticesAchievements.

Figure 859:
successfulAttacksAchievements.

Figure 860:
successfulParriesAchievements.

Figure 861:
surveyedEdgesAchievements.

355 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 3

48.4 Actions per Role

DEPARTMENTOF INFORMATICS 356

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 862: Python-DTU vs. UFSC –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 863: Python-DTU vs. UFSC –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 864: Python-DTU vs. UFSC –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 865: Python-DTU vs. UFSC –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 866: Python-DTU vs. UFSC –
Simulation 3 - Python-DTU Sentinel
Actions.

357 Technical Report IfI-13-01

Python-DTU vs. UFSC – Simulation 3

Figure 867: Python-DTU vs. UFSC
– Simulation 3 - UFSC Explorer Ac-
tions.

Figure 868: Python-DTU vs. UFSC
– Simulation 3 - UFSC Inspector Ac-
tions.

Figure 869: Python-DTU vs. UFSC –
Simulation 3 -UFSCRepairer Actions.

Figure 870: Python-DTU vs. UFSC
– Simulation 3 - UFSC Saboteur Ac-
tions.

Figure 871: Python-DTU vs. UFSC –
Simulation 3 -UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 358

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

49 Streett vs. Python-DTU – Simulation 1

49.1 Scores, Zone Stability and Achievements

Figure 872: Summed scores. Figure 873: Achievement points.

Figure 874: Zones scores. Figure 875: Zones scores and achieve-
ment points.

Figure 876: Zone Stabilities.

359 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 1

Step Python-DTU Streett

1 surveyed10, surveyed40, area10, surveyed20 surveyed40, surveyed10, surveyed20
2 surveyed80
3 surveyed80, proved5 proved5
4 inspected5
5 proved10
6 proved10
8 attacked5
9 surveyed160 attacked5
11 proved20
12 inspected10 area10
14 attacked10
16 proved20 attacked10
18 area20
24 surveyed160
26 inspected5
28 attacked20
29 inspected10
30 proved40
31 proved40
34 surveyed320
35 attacked20
49 area40
51 inspected20
55 attacked40, proved80, area80
62 parried5
77 proved80
94 surveyed640
102 proved160
142 surveyed320
188 area20
194 attacked80
708 area160, area320, area640

Figure 877: Achievements.

DEPARTMENTOF INFORMATICS 360

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

49.2 Stability

Reason Python-DTU % Streett %

failed away 42 0,28 14 0,09
failed parried 5 0,03
failed random 149 0,99 167 1,11
failed 211 1,41 20 0,13

failed resources 504 3,36
failed attacked 6 0,04 30 0,2
noAction 214 1,43 20 0,13

Figure 878: Failed actions.

361 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 1

49.3 Achievements

Figure 879: areaValueAchievements. Figure 880:
inspectedAgentsAchievements.

Figure 881:
probedVerticesAchievements.

Figure 882:
successfulAttacksAchievements.

Figure 883:
successfulParriesAchievements.

Figure 884:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 362

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

49.4 Actions per Role

363 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 1

Figure 885: Streett vs. Python-DTU –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 886: Streett vs. Python-DTU –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 887: Streett vs. Python-DTU –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 888: Streett vs. Python-DTU –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 889: Streett vs. Python-DTU –
Simulation 1 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 364

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 890: Streett vs. Python-DTU
– Simulation 1 - Streett Explorer Ac-
tions.

Figure 891: Streett vs. Python-DTU
– Simulation 1 - Streett Inspector Ac-
tions.

Figure 892: Streett vs. Python-DTU
– Simulation 1 - Streett Repairer Ac-
tions.

Figure 893: Streett vs. Python-DTU
– Simulation 1 - Streett Saboteur Ac-
tions.

Figure 894: Streett vs. Python-DTU
– Simulation 1 - Streett Sentinel Ac-
tions.

365 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 2

50 Streett vs. Python-DTU – Simulation 2

50.1 Scores, Zone Stability and Achievements

Figure 895: Summed scores. Figure 896: Achievement points.

Figure 897: Zones scores. Figure 898: Zones scores and achieve-
ment points.

Figure 899: Zone Stabilities.

DEPARTMENTOF INFORMATICS 366

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step Python-DTU Streett

1 surveyed10, area20, area10, surveyed20 surveyed10, area20, surveyed20, area10
2 surveyed40 surveyed40
3 proved5, inspected5 proved5
5 proved10 inspected5
6 surveyed80 proved10
7 area40, attacked5
8 surveyed80
9 proved20
11 inspected10 proved20
12 surveyed160
14 attacked10
16 inspected10
19 attacked5
21 area40
24 proved40
25 proved40
26 surveyed320 surveyed160
33 attacked10
40 attacked20
54 proved80
56 inspected20
59 proved80
67 area80
71 attacked40
105 proved160
111 area160, area320
114 area640
144 attacked80

Figure 900: Achievements.

367 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 2

50.2 Stability

Reason Python-DTU % Streett %

failed away 28 0,19
failed random 157 1,05 161 1,07
failed resources 174 1,16
failed attacked 2 0,01 24 0,16

Figure 901: Failed actions.

DEPARTMENTOF INFORMATICS 368

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

50.3 Achievements

Figure 902: areaValueAchievements. Figure 903:
inspectedAgentsAchievements.

Figure 904:
probedVerticesAchievements.

Figure 905:
successfulAttacksAchievements.

Figure 906:
surveyedEdgesAchievements.

369 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 2

50.4 Actions per Role

DEPARTMENTOF INFORMATICS 370

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 907: Streett vs. Python-DTU –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 908: Streett vs. Python-DTU –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 909: Streett vs. Python-DTU –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 910: Streett vs. Python-DTU –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 911: Streett vs. Python-DTU –
Simulation 2 - Python-DTU Sentinel
Actions.

371 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 2

Figure 912: Streett vs. Python-DTU
– Simulation 2 - Streett Explorer Ac-
tions.

Figure 913: Streett vs. Python-DTU
– Simulation 2 - Streett Inspector Ac-
tions.

Figure 914: Streett vs. Python-DTU
– Simulation 2 - Streett Repairer Ac-
tions.

Figure 915: Streett vs. Python-DTU
– Simulation 2 - Streett Saboteur Ac-
tions.

Figure 916: Streett vs. Python-DTU
– Simulation 2 - Streett Sentinel Ac-
tions.

DEPARTMENTOF INFORMATICS 372

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

51 Streett vs. Python-DTU – Simulation 3

51.1 Scores, Zone Stability and Achievements

Figure 917: Summed scores. Figure 918: Achievement points.

Figure 919: Zones scores. Figure 920: Zones scores and achieve-
ment points.

Figure 921: Zone Stabilities.

373 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 3

Step Python-DTU Streett

1 surveyed10, area10, surveyed20 surveyed40, surveyed10, surveyed20
3 surveyed40, proved5 area10, proved5, surveyed80
4 attacked5
5 area20, proved10
6 attacked5 proved10
7 surveyed80, inspected5
9 proved20
10 attacked10
11 proved20
12 attacked10 area20
13 area40
14 inspected10 inspected5
17 surveyed160
18 attacked20
20 surveyed160
23 proved40, area80
33 inspected20 attacked20
35 attacked40 proved40
37 surveyed320
39 inspected10
46 proved80
51 area160
77 area320
80 attacked80
100 area640
102 proved160
186 attacked160
475 attacked320

Figure 922: Achievements.

DEPARTMENTOF INFORMATICS 374

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

51.2 Stability

Reason Python-DTU % Streett %

failed away 1 0,01
failed random 135 0,9 134 0,89
failed 3 0,02

failed resources 239 1,59
failed attacked 12 0,08 116 0,77
noAction 4 0,03
failed status 1 0,01

Figure 923: Failed actions.

375 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 3

51.3 Achievements

Figure 924: areaValueAchievements. Figure 925:
inspectedAgentsAchievements.

Figure 926:
probedVerticesAchievements.

Figure 927:
successfulAttacksAchievements.

Figure 928:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 376

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

51.4 Actions per Role

377 Technical Report IfI-13-01

Streett vs. Python-DTU – Simulation 3

Figure 929: Streett vs. Python-DTU –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 930: Streett vs. Python-DTU –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 931: Streett vs. Python-DTU –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 932: Streett vs. Python-DTU –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 933: Streett vs. Python-DTU –
Simulation 3 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 378

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 934: Streett vs. Python-DTU
– Simulation 3 - Streett Explorer Ac-
tions.

Figure 935: Streett vs. Python-DTU
– Simulation 3 - Streett Inspector Ac-
tions.

Figure 936: Streett vs. Python-DTU
– Simulation 3 - Streett Repairer Ac-
tions.

Figure 937: Streett vs. Python-DTU
– Simulation 3 - Streett Saboteur Ac-
tions.

Figure 938: Streett vs. Python-DTU
– Simulation 3 - Streett Sentinel Ac-
tions.

379 Technical Report IfI-13-01

Streett vs. TUB – Simulation 1

52 Streett vs. TUB – Simulation 1

52.1 Scores, Zone Stability and Achievements

Figure 939: Summed scores. Figure 940: Achievement points.

Figure 941: Zones scores. Figure 942: Zones scores and achieve-
ment points.

Figure 943: Zone Stabilities.

DEPARTMENTOF INFORMATICS 380

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB Streett

1 surveyed10, surveyed80, surveyed40, area10, surveyed20 area10
4 area20, proved5
7 inspected5
9 proved10, surveyed160
10 attacked5
13 inspected10
14 area40
20 proved20
21 area80
23 attacked10
38 surveyed10
39 surveyed20
40 proved40
42 inspected5
44 surveyed40
45 attacked20
49 surveyed320 proved5
53 inspected10
62 proved10
65 attacked5
68 surveyed80
78 proved20
86 proved80
94 attacked40
99 attacked10
119 attacked80
124 attacked20
129 proved40
139 surveyed160
154 attacked160
165 attacked40
224 proved160
231 area160, area320
232 attacked80
234 attacked320
253 area640
336 surveyed640
373 attacked640
397 attacked160
731 attacked320

Figure 944: Achievements.

381 Technical Report IfI-13-01

Streett vs. TUB – Simulation 1

52.2 Stability

Reason TUB % Streett %

failed away 428 2,85
failed wrong param 2 0,01
failed random 152 1,01 160 1,07
failed resources 1 0,01 112 0,75

failed 730 4,87
failed attacked 53 0,35 89 0,59
noAction 740 4,93

Figure 945: Failed actions.

DEPARTMENTOF INFORMATICS 382

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

52.3 Achievements

Figure 946: areaValueAchievements. Figure 947:
inspectedAgentsAchievements.

Figure 948:
probedVerticesAchievements.

Figure 949:
successfulAttacksAchievements.

Figure 950:
surveyedEdgesAchievements.

383 Technical Report IfI-13-01

Streett vs. TUB – Simulation 1

52.4 Actions per Role

Figure 951: Streett vs. TUB – Simula-
tion 1 - Streett Explorer Actions.

Figure 952: Streett vs. TUB – Simula-
tion 1 - Streett Inspector Actions.

Figure 953: Streett vs. TUB – Simula-
tion 1 - Streett Repairer Actions.

Figure 954: Streett vs. TUB – Simula-
tion 1 - Streett Saboteur Actions.

Figure 955: Streett vs. TUB – Simula-
tion 1 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 384

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 956: Streett vs. TUB – Simula-
tion 1 - TUB Explorer Actions.

Figure 957: Streett vs. TUB – Simula-
tion 1 - TUB Inspector Actions.

Figure 958: Streett vs. TUB – Simula-
tion 1 - TUB Repairer Actions.

Figure 959: Streett vs. TUB – Simula-
tion 1 - TUB Saboteur Actions.

Figure 960: Streett vs. TUB – Simula-
tion 1 - TUB Sentinel Actions.

385 Technical Report IfI-13-01

Streett vs. TUB – Simulation 2

53 Streett vs. TUB – Simulation 2

53.1 Scores, Zone Stability and Achievements

Figure 961: Summed scores. Figure 962: Achievement points.

Figure 963: Zones scores. Figure 964: Zones scores and achieve-
ment points.

Figure 965: Zone Stabilities.

DEPARTMENTOF INFORMATICS 386

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB Streett

1 surveyed40, surveyed10, surveyed20 surveyed10, surveyed20
2 area10, surveyed80 surveyed40
3 proved5 area10, proved5
5 inspected5
6 inspected5 proved10
9 proved10, attacked5 area20
10 surveyed80, attacked5
11 inspected10, area20
12 proved20
14 attacked10
15 surveyed160
18 area40, proved20
32 proved40, surveyed160
34 area80
44 proved40
46 attacked20
53 area160
110 proved80
130 surveyed320
249 surveyed320

Figure 966: Achievements.

387 Technical Report IfI-13-01

Streett vs. TUB – Simulation 2

53.2 Stability

Reason TUB % Streett %

failed away 623 4,15
failed random 138 0,92 141 0,94
failed resources 1 0,01 331 2,21
failed attacked 2 0,01 13 0,09

Figure 967: Failed actions.

DEPARTMENTOF INFORMATICS 388

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

53.3 Achievements

Figure 968: areaValueAchievements. Figure 969:
inspectedAgentsAchievements.

Figure 970:
probedVerticesAchievements.

Figure 971:
successfulAttacksAchievements.

Figure 972:
surveyedEdgesAchievements.

389 Technical Report IfI-13-01

Streett vs. TUB – Simulation 2

53.4 Actions per Role

Figure 973: Streett vs. TUB – Simula-
tion 2 - Streett Explorer Actions.

Figure 974: Streett vs. TUB – Simula-
tion 2 - Streett Inspector Actions.

Figure 975: Streett vs. TUB – Simula-
tion 2 - Streett Repairer Actions.

Figure 976: Streett vs. TUB – Simula-
tion 2 - Streett Saboteur Actions.

Figure 977: Streett vs. TUB – Simula-
tion 2 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 390

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 978: Streett vs. TUB – Simula-
tion 2 - TUB Explorer Actions.

Figure 979: Streett vs. TUB – Simula-
tion 2 - TUB Inspector Actions.

Figure 980: Streett vs. TUB – Simula-
tion 2 - TUB Repairer Actions.

Figure 981: Streett vs. TUB – Simula-
tion 2 - TUB Saboteur Actions.

Figure 982: Streett vs. TUB – Simula-
tion 2 - TUB Sentinel Actions.

391 Technical Report IfI-13-01

Streett vs. TUB – Simulation 3

54 Streett vs. TUB – Simulation 3

54.1 Scores, Zone Stability and Achievements

Figure 983: Summed scores. Figure 984: Achievement points.

Figure 985: Zones scores. Figure 986: Zones scores and achieve-
ment points.

Figure 987: Zone Stabilities.

DEPARTMENTOF INFORMATICS 392

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB Streett

1 surveyed10, surveyed40, surveyed20 surveyed10, surveyed20, area10, inspected5
2 area10 surveyed40, surveyed80
3 surveyed80
4 area20, proved5 area20, proved5
6 proved10
8 proved10
9 attacked5, inspected5
10 surveyed160
11 proved20
12 attacked5
13 inspected10
14 area40, attacked10
18 attacked10
20 surveyed160
21 proved20
26 attacked20
27 attacked20, inspected20 inspected10, proved40
34 area80
42 surveyed320
43 proved40
51 area160
67 attacked40
83 proved80
93 proved80
100 attacked40
126 attacked80
143 area320
173 area640
200 proved160

Figure 988: Achievements.

393 Technical Report IfI-13-01

Streett vs. TUB – Simulation 3

54.2 Stability

Reason TUB % Streett %

failed away 1 0,01 20 0,13
failed wrong param 16 0,11
failed random 176 1,17 152 1,01
failed 13 0,09

failed resources 5 0,03 265 1,77
failed attacked 21 0,14 31 0,21
noAction 13 0,09

Figure 989: Failed actions.

DEPARTMENTOF INFORMATICS 394

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

54.3 Achievements

Figure 990: areaValueAchievements. Figure 991:
inspectedAgentsAchievements.

Figure 992:
probedVerticesAchievements.

Figure 993:
successfulAttacksAchievements.

Figure 994:
surveyedEdgesAchievements.

395 Technical Report IfI-13-01

Streett vs. TUB – Simulation 3

54.4 Actions per Role

Figure 995: Streett vs. TUB – Simula-
tion 3 - Streett Explorer Actions.

Figure 996: Streett vs. TUB – Simula-
tion 3 - Streett Inspector Actions.

Figure 997: Streett vs. TUB – Simula-
tion 3 - Streett Repairer Actions.

Figure 998: Streett vs. TUB – Simula-
tion 3 - Streett Saboteur Actions.

Figure 999: Streett vs. TUB – Simula-
tion 3 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 396

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1000: Streett vs. TUB – Simula-
tion 3 - TUB Explorer Actions.

Figure 1001: Streett vs. TUB – Simula-
tion 3 - TUB Inspector Actions.

Figure 1002: Streett vs. TUB – Simula-
tion 3 - TUB Repairer Actions.

Figure 1003: Streett vs. TUB – Simula-
tion 3 - TUB Saboteur Actions.

Figure 1004: Streett vs. TUB – Simula-
tion 3 - TUB Sentinel Actions.

397 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 1

55 Streett vs. UFSC – Simulation 1

55.1 Scores, Zone Stability and Achievements

Figure 1005: Summed scores. Figure 1006: Achievement points.

Figure 1007: Zones scores. Figure 1008: Zones scores and
achievement points.

Figure 1009: Zone Stabilities.

DEPARTMENTOF INFORMATICS 398

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC Streett

1 surveyed40, surveyed10, surveyed20 surveyed10, surveyed20
2 surveyed40, surveyed80
3 area10, proved5, surveyed80
4 area10, proved5
5 area20, proved10, attacked5
6 proved10
7 surveyed160
8 area20
10 proved20
12 attacked10
16 area40, proved20
17 surveyed320
18 area40 attacked5
19 inspected5
23 proved40
26 surveyed160
28 attacked10
30 inspected10
31 attacked20 inspected5
32 area80
37 area160
46 proved40
47 proved80
61 attacked40
91 inspected10
99 proved160
113 surveyed320
120 area320
121 proved80

Figure 1010: Achievements.

399 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 1

55.2 Stability

Reason UFSC % Streett %

failed away 2 0,01
failed parried 2 0,01
failed random 145 0,97 128 0,85
failed resources 247 1,65
failed attacked 3 0,02 21 0,14

Figure 1011: Failed actions.

DEPARTMENTOF INFORMATICS 400

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

55.3 Achievements

Figure 1012: areaValueAchievements. Figure 1013:
inspectedAgentsAchievements.

Figure 1014:
probedVerticesAchievements.

Figure 1015:
successfulAttacksAchievements.

Figure 1016:
surveyedEdgesAchievements.

401 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 1

55.4 Actions per Role

Figure 1017: Streett vs. UFSC – Simu-
lation 1 - Streett Explorer Actions.

Figure 1018: Streett vs. UFSC – Simu-
lation 1 - Streett Inspector Actions.

Figure 1019: Streett vs. UFSC – Simu-
lation 1 - Streett Repairer Actions.

Figure 1020: Streett vs. UFSC – Simu-
lation 1 - Streett Saboteur Actions.

Figure 1021: Streett vs. UFSC – Simu-
lation 1 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 402

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1022: Streett vs. UFSC – Simu-
lation 1 - UFSC Explorer Actions.

Figure 1023: Streett vs. UFSC – Simu-
lation 1 - UFSC Inspector Actions.

Figure 1024: Streett vs. UFSC – Simu-
lation 1 - UFSC Repairer Actions.

Figure 1025: Streett vs. UFSC – Simu-
lation 1 - UFSC Saboteur Actions.

Figure 1026: Streett vs. UFSC – Simu-
lation 1 - UFSC Sentinel Actions.

403 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 2

56 Streett vs. UFSC – Simulation 2

56.1 Scores, Zone Stability and Achievements

Figure 1027: Summed scores. Figure 1028: Achievement points.

Figure 1029: Zones scores. Figure 1030: Zones scores and
achievement points.

Figure 1031: Zone Stabilities.

DEPARTMENTOF INFORMATICS 404

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC Streett

1 surveyed10, surveyed40, area10, surveyed20 surveyed40, surveyed10, surveyed20
3 surveyed80, attacked5, proved5 area10
4 proved5, attacked5
5 proved10 area20, surveyed80
6 area20 proved10
7 surveyed160
10 inspected5
11 proved20
14 parried5
15 attacked10 proved20
16 attacked10, inspected5
18 parried10 surveyed160
22 surveyed320
24 proved40
25 inspected10
29 area40, attacked20
31 inspected10
33 proved40
36 area80
50 proved80
77 area40
84 proved80
113 proved160
133 attacked20
147 area160
176 attacked40
245 area320, area640
391 attacked80

Figure 1032: Achievements.

405 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 2

56.2 Stability

Reason UFSC % Streett %

failed away 3 0,02
failed parried 17 0,11
failed random 156 1,04 140 0,93
failed resources 248 1,65
failed attacked 3 0,02 30 0,2

Figure 1033: Failed actions.

DEPARTMENTOF INFORMATICS 406

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

56.3 Achievements

Figure 1034:
areaValueAchievements.

Figure 1035:
inspectedAgentsAchievements.

Figure 1036:
probedVerticesAchievements.

Figure 1037:
successfulAttacksAchievements.

Figure 1038:
successfulParriesAchievements.

Figure 1039:
surveyedEdgesAchievements.

407 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 2

56.4 Actions per Role

Figure 1040: Streett vs. UFSC – Simu-
lation 2 - Streett Explorer Actions.

Figure 1041: Streett vs. UFSC – Simu-
lation 2 - Streett Inspector Actions.

Figure 1042: Streett vs. UFSC – Simu-
lation 2 - Streett Repairer Actions.

Figure 1043: Streett vs. UFSC – Simu-
lation 2 - Streett Saboteur Actions.

Figure 1044: Streett vs. UFSC – Simu-
lation 2 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 408

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1045: Streett vs. UFSC – Simu-
lation 2 - UFSC Explorer Actions.

Figure 1046: Streett vs. UFSC – Simu-
lation 2 - UFSC Inspector Actions.

Figure 1047: Streett vs. UFSC – Simu-
lation 2 - UFSC Repairer Actions.

Figure 1048: Streett vs. UFSC – Simu-
lation 2 - UFSC Saboteur Actions.

Figure 1049: Streett vs. UFSC – Simu-
lation 2 - UFSC Sentinel Actions.

409 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 3

57 Streett vs. UFSC – Simulation 3

57.1 Scores, Zone Stability and Achievements

Figure 1050: Summed scores. Figure 1051: Achievement points.

Figure 1052: Zones scores. Figure 1053: Zones scores and
achievement points.

Figure 1054: Zone Stabilities.

DEPARTMENTOF INFORMATICS 410

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step UFSC Streett

1 surveyed10, surveyed20
2 surveyed10, surveyed40, surveyed20 surveyed40
3 proved5
4 surveyed80, proved5
5 area10 area10, surveyed80, inspected5
6 proved10 proved10
8 surveyed160, inspected5 area20
10 proved20
12 attacked5 proved20
16 surveyed160
17 inspected10
18 attacked10 attacked5
19 area20
21 surveyed320
23 proved40
24 parried5
25 area40
30 inspected10
31 parried10
35 attacked20
39 proved40
49 proved80
66 attacked10
71 attacked40
78 proved80
100 parried20
109 proved160, attacked80
128 surveyed320
129 area80
249 attacked160
281 area160, area320

Figure 1055: Achievements.

411 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 3

57.2 Stability

Reason UFSC % Streett %

failed away 7 0,05
failed parried 21 0,14
failed random 146 0,97 150 1
failed resources 291 1,94

failed 19 0,13 1 0,01
failed attacked 5 0,03 83 0,55
noAction 19 0,13 1 0,01

Figure 1056: Failed actions.

DEPARTMENTOF INFORMATICS 412

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

57.3 Achievements

Figure 1057: areaValueAchievements. Figure 1058:
inspectedAgentsAchievements.

Figure 1059:
probedVerticesAchievements.

Figure 1060:
successfulAttacksAchievements.

Figure 1061:
successfulParriesAchievements.

Figure 1062:
surveyedEdgesAchievements.

413 Technical Report IfI-13-01

Streett vs. UFSC – Simulation 3

57.4 Actions per Role

Figure 1063: Streett vs. UFSC – Simu-
lation 3 - Streett Explorer Actions.

Figure 1064: Streett vs. UFSC – Simu-
lation 3 - Streett Inspector Actions.

Figure 1065: Streett vs. UFSC – Simu-
lation 3 - Streett Repairer Actions.

Figure 1066: Streett vs. UFSC – Simu-
lation 3 - Streett Saboteur Actions.

Figure 1067: Streett vs. UFSC – Simu-
lation 3 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 414

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1068: Streett vs. UFSC – Simu-
lation 3 - UFSC Explorer Actions.

Figure 1069: Streett vs. UFSC – Simu-
lation 3 - UFSC Inspector Actions.

Figure 1070: Streett vs. UFSC – Simu-
lation 3 - UFSC Repairer Actions.

Figure 1071: Streett vs. UFSC – Simu-
lation 3 - UFSC Saboteur Actions.

Figure 1072: Streett vs. UFSC – Simu-
lation 3 - UFSC Sentinel Actions.

415 Technical Report IfI-13-01

Streett vs. USP – Simulation 1

58 Streett vs. USP – Simulation 1

58.1 Scores, Zone Stability and Achievements

Figure 1073: Summed scores. Figure 1074: Achievement points.

Figure 1075: Zones scores. Figure 1076: Zones scores and
achievement points.

Figure 1077: Zone Stabilities.

DEPARTMENTOF INFORMATICS 416

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP Streett

1 surveyed10, area10, surveyed20
2 surveyed10, surveyed20 surveyed40
3 surveyed40, area10 proved5
4 area20, proved5 surveyed80
6 proved10
7 surveyed80
8 proved10
11 proved20
13 inspected5
16 attacked5
17 attacked5
18 proved20 area20, attacked10
20 surveyed160 surveyed160
25 proved40
26 attacked10 area40
32 area40
33 inspected5 inspected10
37 attacked20
51 attacked20
52 proved80
53 surveyed320
66 attacked40
70 proved40
75 attacked40
98 parried5
110 proved160
113 inspected10
115 inspected20
116 surveyed320
119 area80
121 attacked80
131 attacked80
189 proved80
194 area160
211 parried10
226 parried20
348 area80
396 surveyed640
478 parried40
483 attacked160
490 proved160

Figure 1078: Achievements.

417 Technical Report IfI-13-01

Streett vs. USP – Simulation 1

58.2 Stability

Reason USP % Streett %

failed away 39 0,26 16 0,11
failed parried 51 0,34
failed random 151 1,01 121 0,81
failed 151 1,01

failed resources 52 0,35 576 3,84
failed attacked 49 0,33 74 0,49
noAction 152 1,01
failed status 23 0,15

Figure 1079: Failed actions.

DEPARTMENTOF INFORMATICS 418

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

58.3 Achievements

Figure 1080:
areaValueAchievements.

Figure 1081:
inspectedAgentsAchievements.

Figure 1082:
probedVerticesAchievements.

Figure 1083:
successfulAttacksAchievements.

Figure 1084:
successfulParriesAchievements.

Figure 1085:
surveyedEdgesAchievements.

419 Technical Report IfI-13-01

Streett vs. USP – Simulation 1

58.4 Actions per Role

Figure 1086: Streett vs. USP – Simula-
tion 1 - Streett Explorer Actions.

Figure 1087: Streett vs. USP – Simula-
tion 1 - Streett Inspector Actions.

Figure 1088: Streett vs. USP – Simula-
tion 1 - Streett Repairer Actions.

Figure 1089: Streett vs. USP – Simula-
tion 1 - Streett Saboteur Actions.

Figure 1090: Streett vs. USP – Simula-
tion 1 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 420

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1091: Streett vs. USP – Simula-
tion 1 - USP Explorer Actions.

Figure 1092: Streett vs. USP – Simula-
tion 1 - USP Inspector Actions.

Figure 1093: Streett vs. USP – Simula-
tion 1 - USP Repairer Actions.

Figure 1094: Streett vs. USP – Simula-
tion 1 - USP Saboteur Actions.

Figure 1095: Streett vs. USP – Simula-
tion 1 - USP Sentinel Actions.

421 Technical Report IfI-13-01

Streett vs. USP – Simulation 2

59 Streett vs. USP – Simulation 2

59.1 Scores, Zone Stability and Achievements

Figure 1096: Summed scores. Figure 1097: Achievement points.

Figure 1098: Zones scores. Figure 1099: Zones scores and
achievement points.

Figure 1100: Zone Stabilities.

DEPARTMENTOF INFORMATICS 422

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP Streett

1 surveyed10, surveyed20
2 surveyed10, area10, surveyed20 surveyed40
3 surveyed40 attacked5
4 area10, proved5
5 attacked5
6 area20, proved5 proved10
7 surveyed80 surveyed80
8 area20
12 inspected5
14 proved10, inspected5
15 proved20
16 area40
17 inspected10
18 surveyed160
19 area40
20 attacked10
22 surveyed160
23 proved20
24 attacked10
27 area80
30 inspected10 proved40
58 proved40
70 proved80
75 surveyed320
88 attacked20
103 attacked20
114 parried5
126 area160
127 attacked40
135 surveyed320
148 parried10
194 proved160
217 attacked80
229 area320
238 proved80
474 attacked160
603 proved160

Figure 1101: Achievements.

423 Technical Report IfI-13-01

Streett vs. USP – Simulation 2

59.2 Stability

Reason USP % Streett %

failed away 4 0,03
failed parried 10 0,07
failed random 148 0,99 142 0,95
failed 13 0,09

failed resources 70 0,47 344 2,29
failed attacked 11 0,07 73 0,49
noAction 13 0,09

Figure 1102: Failed actions.

DEPARTMENTOF INFORMATICS 424

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

59.3 Achievements

Figure 1103: areaValueAchievements. Figure 1104:
inspectedAgentsAchievements.

Figure 1105:
probedVerticesAchievements.

Figure 1106:
successfulAttacksAchievements.

Figure 1107:
successfulParriesAchievements.

Figure 1108:
surveyedEdgesAchievements.

425 Technical Report IfI-13-01

Streett vs. USP – Simulation 2

59.4 Actions per Role

Figure 1109: Streett vs. USP – Simula-
tion 2 - Streett Explorer Actions.

Figure 1110: Streett vs. USP – Simula-
tion 2 - Streett Inspector Actions.

Figure 1111: Streett vs. USP – Simula-
tion 2 - Streett Repairer Actions.

Figure 1112: Streett vs. USP – Simula-
tion 2 - Streett Saboteur Actions.

Figure 1113: Streett vs. USP – Simula-
tion 2 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 426

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1114: Streett vs. USP – Simula-
tion 2 - USP Explorer Actions.

Figure 1115: Streett vs. USP – Simula-
tion 2 - USP Inspector Actions.

Figure 1116: Streett vs. USP – Simula-
tion 2 - USP Repairer Actions.

Figure 1117: Streett vs. USP – Simula-
tion 2 - USP Saboteur Actions.

Figure 1118: Streett vs. USP – Simula-
tion 2 - USP Sentinel Actions.

427 Technical Report IfI-13-01

Streett vs. USP – Simulation 3

60 Streett vs. USP – Simulation 3

60.1 Scores, Zone Stability and Achievements

Figure 1119: Summed scores. Figure 1120: Achievement points.

Figure 1121: Zones scores. Figure 1122: Zones scores and
achievement points.

Figure 1123: Zone Stabilities.

DEPARTMENTOF INFORMATICS 428

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP Streett

1 surveyed10, surveyed20 surveyed10, surveyed20
2 surveyed40 surveyed40
4 area10, proved5 proved5
6 proved10 proved10, area10, inspected5
7 surveyed80 surveyed80
9 area20
13 area40 attacked5
14 attacked5 inspected10, proved20
15 proved20, inspected5
18 attacked10
24 surveyed160
26 inspected10
29 attacked10
34 attacked20 surveyed160
36 proved40
50 area20
61 proved40
70 attacked40
71 attacked20
76 proved80
87 area80
101 attacked40
124 area40
130 attacked80 surveyed320
229 area160
239 proved80
249 surveyed320
259 attacked160
275 proved160
330 inspected20
604 parried5
650 attacked320

Figure 1124: Achievements.

429 Technical Report IfI-13-01

Streett vs. USP – Simulation 3

60.2 Stability

Reason USP % Streett %

failed away 23 0,15 5 0,03
failed parried 6 0,04
failed random 170 1,13 173 1,15
failed 114 0,76

failed resources 77 0,51 437 2,91
failed attacked 21 0,14 133 0,89
noAction 116 0,77

Figure 1125: Failed actions.

DEPARTMENTOF INFORMATICS 430

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

60.3 Achievements

Figure 1126: areaValueAchievements. Figure 1127:
inspectedAgentsAchievements.

Figure 1128:
probedVerticesAchievements.

Figure 1129:
successfulAttacksAchievements.

Figure 1130:
successfulParriesAchievements.

Figure 1131:
surveyedEdgesAchievements.

431 Technical Report IfI-13-01

Streett vs. USP – Simulation 3

60.4 Actions per Role

Figure 1132: Streett vs. USP – Simula-
tion 3 - Streett Explorer Actions.

Figure 1133: Streett vs. USP – Simula-
tion 3 - Streett Inspector Actions.

Figure 1134: Streett vs. USP – Simula-
tion 3 - Streett Repairer Actions.

Figure 1135: Streett vs. USP – Simula-
tion 3 - Streett Saboteur Actions.

Figure 1136: Streett vs. USP – Simula-
tion 3 - Streett Sentinel Actions.

DEPARTMENTOF INFORMATICS 432

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1137: Streett vs. USP – Simula-
tion 3 - USP Explorer Actions.

Figure 1138: Streett vs. USP – Simula-
tion 3 - USP Inspector Actions.

Figure 1139: Streett vs. USP – Simula-
tion 3 - USP Repairer Actions.

Figure 1140: Streett vs. USP – Simula-
tion 3 - USP Saboteur Actions.

Figure 1141: Streett vs. USP – Simula-
tion 3 - USP Sentinel Actions.

433 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 1

61 TUB vs. Python-DTU – Simulation 1

61.1 Scores, Zone Stability and Achievements

Figure 1142: Summed scores. Figure 1143: Achievement points.

Figure 1144: Zones scores. Figure 1145: Zones scores and
achievement points.

Figure 1146: Zone Stabilities.

DEPARTMENTOF INFORMATICS 434

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB Python-DTU

1 surveyed40, surveyed10, surveyed20, area10, surveyed80 surveyed10, surveyed40, area10, surveyed20
3 surveyed80, proved5, inspected5
4 proved5
5 proved10
6 area20, attacked5
7 surveyed160
8 area20
9 inspected10
10 attacked5 proved20
18 attacked10
19 attacked10, inspected5
20 proved10
23 area40
24 proved40
26 surveyed160
30 attacked20
31 inspected20
33 surveyed320
34 area40
36 inspected10
37 proved20
40 area80, attacked40
43 attacked20
53 proved80
60 attacked80
62 attacked40
67 proved40
70 parried5
95 attacked80
98 surveyed640
101 attacked160
105 proved160
131 area80
136 parried10
143 proved80
153 attacked160
161 attacked320
198 parried20
229 parried40
305 attacked320
323 attacked640
523 parried80
533 attacked640

Figure 1147: Achievements.

435 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 1

61.2 Stability

Reason TUB % Python-DTU %

failed away 6 0,04
failed parried 170 1,13
failed random 160 1,07 155 1,03

failed wrong param 14 0,09
failed resources 2 0,01

failed 12 0,08
failed attacked 60 0,4 38 0,25
noAction 12 0,08

Figure 1148: Failed actions.

DEPARTMENTOF INFORMATICS 436

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

61.3 Achievements

Figure 1149: areaValueAchievements. Figure 1150:
inspectedAgentsAchievements.

Figure 1151:
probedVerticesAchievements.

Figure 1152:
successfulAttacksAchievements.

Figure 1153:
successfulParriesAchievements.

Figure 1154:
surveyedEdgesAchievements.

437 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 1

61.4 Actions per Role

DEPARTMENTOF INFORMATICS 438

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1155: TUB vs. Python-DTU –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 1156: TUB vs. Python-DTU –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 1157: TUB vs. Python-DTU –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 1158: TUB vs. Python-DTU –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 1159: TUB vs. Python-DTU –
Simulation 1 - Python-DTU Sentinel
Actions.

439 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 1

Figure 1160: TUB vs. Python-DTU –
Simulation 1 - TUB Explorer Actions.

Figure 1161: TUB vs. Python-DTU –
Simulation1 - TUB InspectorActions.

Figure 1162: TUB vs. Python-DTU –
Simulation 1 - TUB Repairer Actions.

Figure 1163: TUB vs. Python-DTU –
Simulation 1 - TUB Saboteur Actions.

Figure 1164: TUB vs. Python-DTU –
Simulation 1 - TUB Sentinel Actions.

DEPARTMENTOF INFORMATICS 440

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

62 TUB vs. Python-DTU – Simulation 2

62.1 Scores, Zone Stability and Achievements

Figure 1165: Summed scores. Figure 1166: Achievement points.

Figure 1167: Zones scores. Figure 1168: Zones scores and
achievement points.

Figure 1169: Zone Stabilities.

441 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 2

Step TUB Python-DTU

1 surveyed10, surveyed80, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
3 area20, surveyed80, proved5
4 proved5 inspected5
5 area20 proved10
6 attacked5
9 proved20, surveyed160
10 proved10, attacked5 inspected10, attacked10
11 area40
13 attacked10
16 inspected5
19 surveyed160 attacked20
21 inspected10
22 proved20 proved40
23 attacked20
33 attacked40
36 attacked40 surveyed320
38 area80
49 proved80
50 area40
53 proved40
56 attacked80
68 attacked80
70 area80
83 parried5
89 parried10
90 attacked160
94 inspected20
98 proved160
103 inspected20
118 proved80
120 surveyed640
122 attacked160
155 surveyed320, attacked320
163 area160
172 parried20
268 attacked320
272 parried40
316 attacked640
486 parried80
539 attacked640

Figure 1170: Achievements.

DEPARTMENTOF INFORMATICS 442

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

62.2 Stability

Reason TUB % Python-DTU %

failed away 2 0,01
failed parried 161 1,07

failed wrong param 8 0,05
failed random 155 1,03 135 0,9
failed resources 3 0,02

failed 3 0,02
failed attacked 73 0,49 32 0,21
noAction 3 0,02

Figure 1171: Failed actions.

443 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 2

62.3 Achievements

Figure 1172: areaValueAchievements. Figure 1173:
inspectedAgentsAchievements.

Figure 1174:
probedVerticesAchievements.

Figure 1175:
successfulAttacksAchievements.

Figure 1176:
successfulParriesAchievements.

Figure 1177:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 444

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

62.4 Actions per Role

445 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 2

Figure 1178: TUB vs. Python-DTU –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 1179: TUB vs. Python-DTU –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 1180: TUB vs. Python-DTU –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 1181: TUB vs. Python-DTU –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 1182: TUB vs. Python-DTU –
Simulation 2 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 446

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1183: TUB vs. Python-DTU –
Simulation 2 - TUB Explorer Actions.

Figure 1184: TUB vs. Python-DTU –
Simulation2 - TUB InspectorActions.

Figure 1185: TUB vs. Python-DTU –
Simulation 2 - TUB Repairer Actions.

Figure 1186: TUB vs. Python-DTU –
Simulation 2 - TUB Saboteur Actions.

Figure 1187: TUB vs. Python-DTU –
Simulation 2 - TUB Sentinel Actions.

447 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 3

63 TUB vs. Python-DTU – Simulation 3

63.1 Scores, Zone Stability and Achievements

Figure 1188: Summed scores. Figure 1189: Achievement points.

Figure 1190: Zones scores. Figure 1191: Zones scores and
achievement points.

Figure 1192: Zone Stabilities.

DEPARTMENTOF INFORMATICS 448

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step TUB Python-DTU

1 surveyed10, surveyed40, surveyed20 surveyed10, surveyed40, surveyed20
3 surveyed80, area10 surveyed80, attacked5, proved5, inspected5
4 area20, proved5 area10
7 inspected5 proved10, surveyed160
8 attacked5 attacked10
10 inspected10
11 area40, proved10
12 inspected10, surveyed160
13 attacked10
15 inspected20
16 proved20
19 attacked20
21 attacked20
22 proved20
25 area20, surveyed320
30 area80
32 attacked40 proved40
40 area40, attacked40
50 proved40
51 attacked80
60 area80
61 proved80
72 attacked80
73 parried5
79 parried10
88 attacked160
97 inspected20
102 parried20
114 proved160
129 attacked160
136 area160
154 attacked320
156 proved80
164 area160
170 surveyed320
238 parried40
290 attacked640
294 attacked320
581 attacked640

Figure 1193: Achievements.

449 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 3

63.2 Stability

Reason TUB % Python-DTU %

failed away 2 0,01 3 0,02
failed parried 72 0,48

failed wrong param 4 0,03
failed random 133 0,89 148 0,99
failed resources 3 0,02
failed attacked 51 0,34 76 0,51

Figure 1194: Failed actions.

DEPARTMENTOF INFORMATICS 450

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

63.3 Achievements

Figure 1195: areaValueAchievements. Figure 1196:
inspectedAgentsAchievements.

Figure 1197:
probedVerticesAchievements.

Figure 1198:
successfulAttacksAchievements.

Figure 1199:
successfulParriesAchievements.

Figure 1200:
surveyedEdgesAchievements.

451 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 3

63.4 Actions per Role

DEPARTMENTOF INFORMATICS 452

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1201: TUB vs. Python-DTU –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 1202: TUB vs. Python-DTU –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 1203: TUB vs. Python-DTU –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 1204: TUB vs. Python-DTU –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 1205: TUB vs. Python-DTU –
Simulation 3 - Python-DTU Sentinel
Actions.

453 Technical Report IfI-13-01

TUB vs. Python-DTU – Simulation 3

Figure 1206: TUB vs. Python-DTU –
Simulation 3 - TUB Explorer Actions.

Figure 1207: TUB vs. Python-DTU –
Simulation3 - TUB InspectorActions.

Figure 1208: TUB vs. Python-DTU –
Simulation 3 - TUB Repairer Actions.

Figure 1209: TUB vs. Python-DTU –
Simulation 3 - TUB Saboteur Actions.

Figure 1210: TUB vs. Python-DTU –
Simulation 3 - TUB Sentinel Actions.

DEPARTMENTOF INFORMATICS 454

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

64 TUB vs. UFSC – Simulation 1

64.1 Scores, Zone Stability and Achievements

Figure 1211: Summed scores. Figure 1212: Achievement points.

Figure 1213: Zones scores. Figure 1214: Zones scores and
achievement points.

Figure 1215: Zone Stabilities.

455 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 1

Step TUB UFSC

1 surveyed10, surveyed80, surveyed40, surveyed20 surveyed10, surveyed40, surveyed20
3 surveyed80, area10, proved5
4 proved5
5 proved10
6 surveyed160, attacked5, inspected5
7 area10
8 attacked5
10 inspected5 proved20
12 area20
13 area40
15 proved10
17 surveyed320
19 attacked10 attacked10
22 area80 proved40
24 area20
25 proved20
26 parried5
29 attacked20
30 parried10
31 surveyed160 area40
32 attacked20
45 inspected10
47 attacked40
49 proved80
54 proved40
55 attacked40
61 inspected10
75 area80
81 attacked80
92 attacked80
93 area160
98 proved160
126 surveyed320
132 attacked160
146 proved80
169 attacked160
172 parried20
180 inspected20
236 inspected20
251 attacked320
266 attacked320
319 proved160
379 attacked640
404 parried40
427 attacked640
471 surveyed640
523 parried80
636 surveyed640

Figure 1216: Achievements.

DEPARTMENTOF INFORMATICS 456

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

64.2 Stability

Reason TUB % UFSC %

failed away 4 0,03 8 0,05
failed parried 206 1,37

failed wrong param 255 1,7
failed random 165 1,1 145 0,97
failed resources 5 0,03

failed 108 0,72
failed attacked 103 0,69 94 0,63
noAction 108 0,72

Figure 1217: Failed actions.

457 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 1

64.3 Achievements

Figure 1218: areaValueAchievements. Figure 1219:
inspectedAgentsAchievements.

Figure 1220:
probedVerticesAchievements.

Figure 1221:
successfulAttacksAchievements.

Figure 1222:
successfulParriesAchievements.

Figure 1223:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 458

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

64.4 Actions per Role

Figure 1224: TUB vs. UFSC – Simula-
tion 1 - TUB Explorer Actions.

Figure 1225: TUB vs. UFSC – Simula-
tion 1 - TUB Inspector Actions.

Figure 1226: TUB vs. UFSC – Simula-
tion 1 - TUB Repairer Actions.

Figure 1227: TUB vs. UFSC – Simula-
tion 1 - TUB Saboteur Actions.

Figure 1228: TUB vs. UFSC – Simula-
tion 1 - TUB Sentinel Actions.

459 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 1

Figure 1229: TUB vs. UFSC – Simula-
tion 1 - UFSC Explorer Actions.

Figure 1230: TUB vs. UFSC – Simula-
tion 1 - UFSC Inspector Actions.

Figure 1231: TUB vs. UFSC – Simula-
tion 1 - UFSC Repairer Actions.

Figure 1232: TUB vs. UFSC – Simula-
tion 1 - UFSC Saboteur Actions.

Figure 1233: TUB vs. UFSC – Simula-
tion 1 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 460

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

65 TUB vs. UFSC – Simulation 2

65.1 Scores, Zone Stability and Achievements

Figure 1234: Summed scores. Figure 1235: Achievement points.

Figure 1236: Zones scores. Figure 1237: Zones scores and
achievement points.

Figure 1238: Zone Stabilities.

461 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 2

Step TUB UFSC

1 surveyed10, surveyed80, surveyed40, area10, surveyed20 surveyed10, area10
2 surveyed40, surveyed20
3 surveyed80, proved5
4 proved5
5 area20, proved10
7 surveyed160
8 attacked5
10 area20
11 proved20
13 proved10, surveyed160 attacked5
15 attacked10
16 inspected5
17 area40
19 surveyed320, attacked10
21 proved20
23 proved40
25 area40, parried5
29 inspected10
30 parried10, attacked20, inspected5
33 inspected10
37 attacked20
39 parried20
48 attacked40
49 proved80
54 proved40
55 area80, parried40
64 attacked40
77 area80 attacked80
98 attacked80
111 surveyed320
117 proved160
119 parried80
129 proved80
132 attacked160
185 inspected20, attacked160
231 attacked320
256 attacked320
266 area160
309 inspected20
420 attacked640
451 attacked640
575 parried160

Figure 1239: Achievements.

DEPARTMENTOF INFORMATICS 462

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

65.2 Stability

Reason TUB % UFSC %

failed away 10 0,07 2 0,01
failed parried 254 1,69

failed wrong param 4 0,03
failed random 162 1,08 138 0,92
failed resources 2 0,01 2 0,01

failed 2 0,01 22 0,15
failed attacked 140 0,93 62 0,41
noAction 2 0,01 22 0,15

Figure 1240: Failed actions.

463 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 2

65.3 Achievements

Figure 1241:
areaValueAchievements.

Figure 1242:
inspectedAgentsAchievements.

Figure 1243:
probedVerticesAchievements.

Figure 1244:
successfulAttacksAchievements.

Figure 1245:
successfulParriesAchievements.

Figure 1246:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 464

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

65.4 Actions per Role

Figure 1247: TUB vs. UFSC – Simula-
tion 2 - TUB Explorer Actions.

Figure 1248: TUB vs. UFSC – Simula-
tion 2 - TUB Inspector Actions.

Figure 1249: TUB vs. UFSC – Simula-
tion 2 - TUB Repairer Actions.

Figure 1250: TUB vs. UFSC – Simula-
tion 2 - TUB Saboteur Actions.

Figure 1251: TUB vs. UFSC – Simula-
tion 2 - TUB Sentinel Actions.

465 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 2

Figure 1252: TUB vs. UFSC – Simula-
tion 2 - UFSC Explorer Actions.

Figure 1253: TUB vs. UFSC – Simula-
tion 2 - UFSC Inspector Actions.

Figure 1254: TUB vs. UFSC – Simula-
tion 2 - UFSC Repairer Actions.

Figure 1255: TUB vs. UFSC – Simula-
tion 2 - UFSC Saboteur Actions.

Figure 1256: TUB vs. UFSC – Simula-
tion 2 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 466

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

66 TUB vs. UFSC – Simulation 3

66.1 Scores, Zone Stability and Achievements

Figure 1257: Summed scores. Figure 1258: Achievement points.

Figure 1259: Zones scores. Figure 1260: Zones scores and
achievement points.

Figure 1261: Zone Stabilities.

467 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 3

Step TUB UFSC

1 surveyed10, area20, surveyed80, surveyed40, area10, surveyed20 surveyed10, area20, area10
2 inspected5 surveyed20, inspected5
3 proved5 surveyed40, proved5
5 proved10, surveyed80, attacked5
6 proved10
7 area40
9 surveyed160
10 inspected10 surveyed160
11 attacked5 inspected10, proved20
12 attacked10
18 proved20
19 attacked20
22 attacked10 proved40
24 parried5
26 area40
33 area80
35 attacked20
40 attacked40
43 proved40
46 proved80
49 attacked40
56 attacked80, area80
68 surveyed320
70 attacked80
101 attacked160
102 proved80
109 attacked160
110 inspected20
112 proved160
116 surveyed320
132 inspected20
168 parried10
172 attacked320
202 attacked320
216 parried20
236 area160, area320

Figure 1262: Achievements.

DEPARTMENTOF INFORMATICS 468

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

66.2 Stability

Reason TUB % UFSC %

failed away 1 0,01 3 0,02
failed parried 24 0,16

failed wrong param 15 0,1
failed random 143 0,95 161 1,07
failed resources 2 0,01

failed 1790 11,93 9 0,06
failed attacked 40 0,27 19 0,13
noAction 1801 12,01 9 0,06

Figure 1263: Failed actions.

469 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 3

66.3 Achievements

Figure 1264:
areaValueAchievements.

Figure 1265:
inspectedAgentsAchievements.

Figure 1266:
probedVerticesAchievements.

Figure 1267:
successfulAttacksAchievements.

Figure 1268:
successfulParriesAchievements.

Figure 1269:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 470

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

66.4 Actions per Role

Figure 1270: TUB vs. UFSC – Simula-
tion 3 - TUB Explorer Actions.

Figure 1271: TUB vs. UFSC – Simula-
tion 3 - TUB Inspector Actions.

Figure 1272: TUB vs. UFSC – Simula-
tion 3 - TUB Repairer Actions.

Figure 1273: TUB vs. UFSC – Simula-
tion 3 - TUB Saboteur Actions.

Figure 1274: TUB vs. UFSC – Simula-
tion 3 - TUB Sentinel Actions.

471 Technical Report IfI-13-01

TUB vs. UFSC – Simulation 3

Figure 1275: TUB vs. UFSC – Simula-
tion 3 - UFSC Explorer Actions.

Figure 1276: TUB vs. UFSC – Simula-
tion 3 - UFSC Inspector Actions.

Figure 1277: TUB vs. UFSC – Simula-
tion 3 - UFSC Repairer Actions.

Figure 1278: TUB vs. UFSC – Simula-
tion 3 - UFSC Saboteur Actions.

Figure 1279: TUB vs. UFSC – Simula-
tion 3 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 472

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

67 TUB vs. USP – Simulation 1

67.1 Scores, Zone Stability and Achievements

Figure 1280: Summed scores. Figure 1281: Achievement points.

Figure 1282: Zones scores. Figure 1283: Zones scores and
achievement points.

Figure 1284: Zone Stabilities.

473 Technical Report IfI-13-01

TUB vs. USP – Simulation 1

Step TUB USP

1 surveyed10, surveyed80, surveyed40, surveyed20
2 area10 surveyed10, surveyed40, surveyed20
3 proved5 area10
4 area20, surveyed80, proved5
5 area40
6 surveyed160 proved10
8 proved10
10 attacked5
11 area20, inspected5
13 attacked5
15 inspected10 inspected5
16 surveyed160
18 attacked10 proved20
21 attacked10
23 proved20
24 attacked20
26 parried5
28 area40, inspected20
31 attacked20
34 parried10
37 inspected10
39 attacked40, surveyed320
57 attacked80
63 proved40
64 attacked40
72 area80
92 parried20
95 attacked160
97 proved40
117 area80
124 proved80
164 attacked80
172 parried40
177 surveyed320
199 attacked320
226 proved80
242 inspected20
266 area160
274 parried80
333 proved160
374 attacked160
386 parried160
423 surveyed640
430 attacked640
491 proved160
646 surveyed640
725 attacked320

Figure 1285: Achievements.

DEPARTMENTOF INFORMATICS 474

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

67.2 Stability

Reason TUB % USP %

failed away 1 0,01 327 2,18
failed parried 446 2,97

failed wrong param 12 0,08
failed random 144 0,96 160 1,07
failed resources 1 0,01 42 0,28

failed 4 0,03
failed attacked 70 0,47 159 1,06
noAction 4 0,03

Figure 1286: Failed actions.

475 Technical Report IfI-13-01

TUB vs. USP – Simulation 1

67.3 Achievements

Figure 1287: areaValueAchievements. Figure 1288:
inspectedAgentsAchievements.

Figure 1289:
probedVerticesAchievements.

Figure 1290:
successfulAttacksAchievements.

Figure 1291:
successfulParriesAchievements.

Figure 1292:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 476

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

67.4 Actions per Role

Figure 1293: TUB vs. USP – Simula-
tion 1 - TUB Explorer Actions.

Figure 1294: TUB vs. USP – Simula-
tion 1 - TUB Inspector Actions.

Figure 1295: TUB vs. USP – Simula-
tion 1 - TUB Repairer Actions.

Figure 1296: TUB vs. USP – Simula-
tion 1 - TUB Saboteur Actions.

Figure 1297: TUB vs. USP – Simula-
tion 1 - TUB Sentinel Actions.

477 Technical Report IfI-13-01

TUB vs. USP – Simulation 1

Figure 1298: TUB vs. USP – Simula-
tion 1 - USP Explorer Actions.

Figure 1299: TUB vs. USP – Simula-
tion 1 - USP Inspector Actions.

Figure 1300: TUB vs. USP – Simula-
tion 1 - USP Repairer Actions.

Figure 1301: TUB vs. USP – Simula-
tion 1 - USP Saboteur Actions.

Figure 1302: TUB vs. USP – Simula-
tion 1 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 478

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

68 TUB vs. USP – Simulation 2

68.1 Scores, Zone Stability and Achievements

Figure 1303: Summed scores. Figure 1304: Achievement points.

Figure 1305: Zones scores. Figure 1306: Zones scores and
achievement points.

Figure 1307: Zone Stabilities.

479 Technical Report IfI-13-01

TUB vs. USP – Simulation 2

Step TUB USP

1 surveyed40, surveyed10, surveyed20, area10, surveyed80 surveyed10, area10
2 surveyed40, surveyed20
3 surveyed80
4 proved5, inspected5 proved5
6 proved10
8 area20
9 attacked5
10 area20
11 area40
12 inspected10, surveyed160
15 proved10 proved20
16 surveyed160
17 attacked10
18 parried5
19 inspected5
22 attacked5
23 proved20 area40
24 area80
33 attacked20
34 attacked10
38 proved40
44 attacked40
45 proved40
53 inspected10, attacked20
57 parried10
64 area160
65 parried20
85 attacked80
100 parried40
109 area80
113 surveyed320
149 attacked160
154 attacked40
190 proved80
199 inspected20
204 parried80
257 attacked320
275 attacked80
430 parried160
497 attacked160
504 attacked640

Figure 1308: Achievements.

DEPARTMENTOF INFORMATICS 480

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

68.2 Stability

Reason TUB % USP %

failed away 1 0,01 283 1,89
failed parried 383 2,55
failed random 120 0,8 172 1,15
failed 272 1,81

failed resources 3 0,02 45 0,3
failed attacked 47 0,31 171 1,14
noAction 275 1,83

Figure 1309: Failed actions.

481 Technical Report IfI-13-01

TUB vs. USP – Simulation 2

68.3 Achievements

Figure 1310: areaValueAchievements. Figure 1311:
inspectedAgentsAchievements.

Figure 1312:
probedVerticesAchievements.

Figure 1313:
successfulAttacksAchievements.

Figure 1314:
successfulParriesAchievements.

Figure 1315:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 482

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

68.4 Actions per Role

Figure 1316: TUB vs. USP – Simula-
tion 2 - TUB Explorer Actions.

Figure 1317: TUB vs. USP – Simula-
tion 2 - TUB Inspector Actions.

Figure 1318: TUB vs. USP – Simula-
tion 2 - TUB Repairer Actions.

Figure 1319: TUB vs. USP – Simula-
tion 2 - TUB Saboteur Actions.

Figure 1320: TUB vs. USP – Simula-
tion 2 - TUB Sentinel Actions.

483 Technical Report IfI-13-01

TUB vs. USP – Simulation 2

Figure 1321: TUB vs. USP – Simula-
tion 2 - USP Explorer Actions.

Figure 1322: TUB vs. USP – Simula-
tion 2 - USP Inspector Actions.

Figure 1323: TUB vs. USP – Simula-
tion 2 - USP Repairer Actions.

Figure 1324: TUB vs. USP – Simula-
tion 2 - USP Saboteur Actions.

Figure 1325: TUB vs. USP – Simula-
tion 2 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 484

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

69 TUB vs. USP – Simulation 3

69.1 Scores, Zone Stability and Achievements

Figure 1326: Summed scores. Figure 1327: Achievement points.

Figure 1328: Zones scores. Figure 1329: Zones scores and
achievement points.

Figure 1330: Zone Stabilities.

485 Technical Report IfI-13-01

TUB vs. USP – Simulation 3

Step TUB USP

1 surveyed10, surveyed80, surveyed40, area10, surveyed20 surveyed10
2 surveyed40, area10, surveyed20
4 proved5 area20, proved5
5 inspected5 surveyed80
6 area20 proved10
7 area40
9 area40, proved10
10 inspected10
12 surveyed160 attacked5, inspected5
13 attacked5
16 area80
17 attacked10 proved20
18 proved20 attacked10
21 inspected10
22 surveyed160
24 attacked20
29 parried5
36 parried10
39 attacked40, proved40
41 area160
42 parried20
57 attacked20
65 area80
70 parried40
72 proved40, inspected20
86 attacked80
90 area320
112 proved80
134 surveyed320
135 attacked40
140 attacked160
221 parried80
249 attacked80
250 attacked320
299 surveyed320
319 proved80
393 parried160
437 attacked160
438 area160
520 attacked640
728 parried320

Figure 1331: Achievements.

DEPARTMENTOF INFORMATICS 486

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

69.2 Stability

Reason TUB % USP %

failed away 305 2,03
failed parried 468 3,12

failed wrong param 2 0,01
failed random 129 0,86 150 1
failed 147 0,98

failed resources 4 0,03 76 0,51
failed attacked 40 0,27 183 1,22
noAction 148 0,99
failed status 1 0,01

Figure 1332: Failed actions.

487 Technical Report IfI-13-01

TUB vs. USP – Simulation 3

69.3 Achievements

Figure 1333:
areaValueAchievements.

Figure 1334:
inspectedAgentsAchievements.

Figure 1335:
probedVerticesAchievements.

Figure 1336:
successfulAttacksAchievements.

Figure 1337:
successfulParriesAchievements.

Figure 1338:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 488

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

69.4 Actions per Role

Figure 1339: TUB vs. USP – Simula-
tion 3 - TUB Explorer Actions.

Figure 1340: TUB vs. USP – Simula-
tion 3 - TUB Inspector Actions.

Figure 1341: TUB vs. USP – Simula-
tion 3 - TUB Repairer Actions.

Figure 1342: TUB vs. USP – Simula-
tion 3 - TUB Saboteur Actions.

Figure 1343: TUB vs. USP – Simula-
tion 3 - TUB Sentinel Actions.

489 Technical Report IfI-13-01

TUB vs. USP – Simulation 3

Figure 1344: TUB vs. USP – Simula-
tion 3 - USP Explorer Actions.

Figure 1345: TUB vs. USP – Simula-
tion 3 - USP Inspector Actions.

Figure 1346: TUB vs. USP – Simula-
tion 3 - USP Repairer Actions.

Figure 1347: TUB vs. USP – Simula-
tion 3 - USP Saboteur Actions.

Figure 1348: TUB vs. USP – Simula-
tion 3 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 490

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

70 USP vs. Python-DTU – Simulation 1

70.1 Scores, Zone Stability and Achievements

Figure 1349: Summed scores. Figure 1350: Achievement points.

Figure 1351: Zones scores. Figure 1352: Zones scores and
achievement points.

Figure 1353: Zone Stabilities.

491 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 1

Step USP Python-DTU

1 surveyed10, surveyed40, surveyed20
2 surveyed10, surveyed40, surveyed20
3 surveyed80, area10 surveyed80, area10, proved5
4 proved5
5 proved10, surveyed160
7 proved10 attacked5
9 proved20
13 attacked10
14 proved20
15 inspected5
16 inspected10, area20
19 area40
20 area20 surveyed320
21 surveyed160, attacked5
23 proved40
26 attacked20
29 parried5
36 attacked10, inspected5
43 proved40
44 attacked20
48 parried10
51 proved80
55 attacked40
57 area40
62 inspected20
65 parried20
66 inspected10
80 surveyed640
92 parried40
100 proved160
104 attacked80
117 area80
135 parried80
142 attacked40
185 surveyed320
188 proved80
194 attacked160
203 area80
227 parried160
252 attacked80
297 parried5
303 parried10
313 parried20
337 attacked320
343 parried40
425 parried80
467 proved160
478 parried320
495 attacked160
579 surveyed640
620 parried160
690 attacked640

Figure 1354: Achievements.

DEPARTMENTOF INFORMATICS 492

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

70.2 Stability

Reason USP % Python-DTU %

failed away 266 1,77
failed parried 211 1,41 498 3,32
failed random 148 0,99 154 1,03
failed resources 25 0,17
failed attacked 218 1,45 77 0,51

Figure 1355: Failed actions.

493 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 1

70.3 Achievements

Figure 1356:
areaValueAchievements.

Figure 1357:
inspectedAgentsAchievements.

Figure 1358:
probedVerticesAchievements.

Figure 1359:
successfulAttacksAchievements.

Figure 1360:
successfulParriesAchievements.

Figure 1361:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 494

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

70.4 Actions per Role

495 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 1

Figure 1362: USP vs. Python-DTU –
Simulation 1 - Python-DTU Explorer
Actions.

Figure 1363: USP vs. Python-DTU –
Simulation 1 - Python-DTU Inspector
Actions.

Figure 1364: USP vs. Python-DTU –
Simulation 1 - Python-DTU Repairer
Actions.

Figure 1365: USP vs. Python-DTU –
Simulation 1 - Python-DTU Saboteur
Actions.

Figure 1366: USP vs. Python-DTU –
Simulation 1 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 496

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1367: USP vs. Python-DTU –
Simulation 1 - USP Explorer Actions.

Figure 1368: USP vs. Python-DTU –
Simulation 1 - USP Inspector Actions.

Figure 1369: USP vs. Python-DTU –
Simulation 1 - USP Repairer Actions.

Figure 1370: USP vs. Python-DTU –
Simulation 1 - USP Saboteur Actions.

Figure 1371: USP vs. Python-DTU –
Simulation 1 - USP Sentinel Actions.

497 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 2

71 USP vs. Python-DTU – Simulation 2

71.1 Scores, Zone Stability and Achievements

Figure 1372: Summed scores. Figure 1373: Achievement points.

Figure 1374: Zones scores. Figure 1375: Zones scores and
achievement points.

Figure 1376: Zone Stabilities.

DEPARTMENTOF INFORMATICS 498

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP Python-DTU

1 area10 surveyed10, area20, surveyed40, area10, surveyed20
2 surveyed10, surveyed20
3 surveyed40 surveyed80, proved5
4 proved5 inspected5
5 proved10
6 area20
7 proved10 inspected10
8 surveyed80
9 area40 proved20, surveyed160
14 attacked5
16 proved20
19 attacked5
20 attacked10
22 inspected5
24 surveyed320
25 inspected20
26 proved40, attacked20
27 surveyed160
31 area40
32 attacked10
38 area80
39 attacked40
40 parried5
50 parried10
56 proved80
63 inspected10, attacked20
75 parried20
77 proved40
85 attacked80
88 attacked40
104 proved160
107 surveyed640
136 parried5
150 parried40 attacked160
151 parried10
163 area160
171 parried20
184 attacked80
215 parried80
230 surveyed320
258 parried40
263 proved80
273 attacked320
329 parried160
369 attacked160
444 parried80
493 inspected20
534 attacked640
575 proved160
607 parried320
695 parried160

Figure 1377: Achievements.

499 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 2

71.2 Stability

Reason USP % Python-DTU %

failed away 395 2,63
failed parried 196 1,31 403 2,69
failed random 144 0,96 146 0,97
failed resources 40 0,27
failed attacked 247 1,65 48 0,32
failed status 1 0,01

Figure 1378: Failed actions.

DEPARTMENTOF INFORMATICS 500

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

71.3 Achievements

Figure 1379: areaValueAchievements. Figure 1380:
inspectedAgentsAchievements.

Figure 1381:
probedVerticesAchievements.

Figure 1382:
successfulAttacksAchievements.

Figure 1383:
successfulParriesAchievements.

Figure 1384:
surveyedEdgesAchievements.

501 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 2

71.4 Actions per Role

DEPARTMENTOF INFORMATICS 502

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1385: USP vs. Python-DTU –
Simulation 2 - Python-DTU Explorer
Actions.

Figure 1386: USP vs. Python-DTU –
Simulation 2 - Python-DTU Inspector
Actions.

Figure 1387: USP vs. Python-DTU –
Simulation 2 - Python-DTU Repairer
Actions.

Figure 1388: USP vs. Python-DTU –
Simulation 2 - Python-DTU Saboteur
Actions.

Figure 1389: USP vs. Python-DTU –
Simulation 2 - Python-DTU Sentinel
Actions.

503 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 2

Figure 1390: USP vs. Python-DTU –
Simulation 2 - USP Explorer Actions.

Figure 1391: USP vs. Python-DTU –
Simulation 2 - USP Inspector Actions.

Figure 1392: USP vs. Python-DTU –
Simulation 2 - USP Repairer Actions.

Figure 1393: USP vs. Python-DTU –
Simulation 2 - USP Saboteur Actions.

Figure 1394: USP vs. Python-DTU –
Simulation 2 - USP Sentinel Actions.

DEPARTMENTOF INFORMATICS 504

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

72 USP vs. Python-DTU – Simulation 3

72.1 Scores, Zone Stability and Achievements

Figure 1395: Summed scores. Figure 1396: Achievement points.

Figure 1397: Zones scores. Figure 1398: Zones scores and
achievement points.

Figure 1399: Zone Stabilities.

505 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 3

Step USP Python-DTU

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, surveyed40, area10, surveyed20
3 proved5 proved5
4 surveyed80, inspected5
5 proved10 proved10, attacked5
6 area20
7 attacked5, inspected5
8 surveyed80 attacked10
9 inspected10, area20
11 proved20
12 parried5, attacked10
15 parried10 surveyed160
17 proved20
18 inspected10, parried20
20 area40
21 area40
25 proved40, attacked20
33 surveyed320
35 parried40 area80
36 area160
38 surveyed160
40 attacked20
46 inspected20
52 attacked40
53 proved40, area80 proved80
56 parried5
85 parried80
106 proved160
110 attacked80
141 parried10
152 attacked40
153 parried20
183 attacked160
184 area320
219 parried160
247 attacked80
267 proved80
295 surveyed320
304 parried40
327 attacked320
400 attacked160
444 parried80
486 parried320
636 attacked640
651 proved160

Figure 1400: Achievements.

DEPARTMENTOF INFORMATICS 506

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

72.2 Stability

Reason USP % Python-DTU %

failed away 317 2,11
failed parried 158 1,05 468 3,12
failed random 155 1,03 154 1,03
failed resources 63 0,42
failed attacked 220 1,47 86 0,57

Figure 1401: Failed actions.

507 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 3

72.3 Achievements

Figure 1402: areaValueAchievements. Figure 1403:
inspectedAgentsAchievements.

Figure 1404:
probedVerticesAchievements.

Figure 1405:
successfulAttacksAchievements.

Figure 1406:
successfulParriesAchievements.

Figure 1407:
surveyedEdgesAchievements.

DEPARTMENTOF INFORMATICS 508

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

72.4 Actions per Role

509 Technical Report IfI-13-01

USP vs. Python-DTU – Simulation 3

Figure 1408: USP vs. Python-DTU –
Simulation 3 - Python-DTU Explorer
Actions.

Figure 1409: USP vs. Python-DTU –
Simulation 3 - Python-DTU Inspector
Actions.

Figure 1410: USP vs. Python-DTU –
Simulation 3 - Python-DTU Repairer
Actions.

Figure 1411: USP vs. Python-DTU –
Simulation 3 - Python-DTU Saboteur
Actions.

Figure 1412: USP vs. Python-DTU –
Simulation 3 - Python-DTU Sentinel
Actions.

DEPARTMENTOF INFORMATICS 510

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1413: USP vs. Python-DTU –
Simulation 3 - USP Explorer Actions.

Figure 1414: USP vs. Python-DTU –
Simulation 3 - USP Inspector Actions.

Figure 1415: USP vs. Python-DTU –
Simulation 3 - USP Repairer Actions.

Figure 1416: USP vs. Python-DTU –
Simulation 3 - USP Saboteur Actions.

Figure 1417: USP vs. Python-DTU –
Simulation 3 - USP Sentinel Actions.

511 Technical Report IfI-13-01

USP vs. UFSC – Simulation 1

73 USP vs. UFSC – Simulation 1

73.1 Scores, Zone Stability and Achievements

Figure 1418: Summed scores. Figure 1419: Achievement points.

Figure 1420: Zones scores. Figure 1421: Zones scores and
achievement points.

Figure 1422: Zone Stabilities.

DEPARTMENTOF INFORMATICS 512

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP UFSC

1 surveyed10, area10, surveyed20 surveyed10, area20, surveyed40, area10, surveyed20
2 surveyed40
3 proved5 surveyed80, proved5
4 inspected5
5 proved10, surveyed160
6 area20, proved10, surveyed80
8 area40 inspected10
9 proved20
15 surveyed320
16 proved20, area80 attacked5
22 surveyed160 proved40
26 area40
27 area80
38 proved40
45 area160
46 proved80
64 parried5
71 parried10
84 attacked5 attacked10
85 inspected5
105 attacked20
111 proved160
113 parried20
122 area320
124 attacked10
132 attacked40
137 inspected20
145 attacked20
151 surveyed320
153 proved80
167 inspected10
184 attacked80
200 surveyed640
202 parried40
211 attacked40
270 parried80
291 attacked160
340 parried5
372 parried10
384 attacked80
427 attacked320
430 parried160
593 inspected20
630 proved160
644 parried20
706 parried320
745 attacked160

Figure 1423: Achievements.

513 Technical Report IfI-13-01

USP vs. UFSC – Simulation 1

73.2 Stability

Reason USP % UFSC %

failed away 241 1,61
failed parried 31 0,21 347 2,31
failed random 144 0,96 147 0,98
failed 7 0,05

failed resources 52 0,35
failed attacked 178 1,19 19 0,13
noAction 7 0,05

Figure 1424: Failed actions.

DEPARTMENTOF INFORMATICS 514

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

73.3 Achievements

Figure 1425:
areaValueAchievements.

Figure 1426:
inspectedAgentsAchievements.

Figure 1427:
probedVerticesAchievements.

Figure 1428:
successfulAttacksAchievements.

Figure 1429:
successfulParriesAchievements.

Figure 1430:
surveyedEdgesAchievements.

515 Technical Report IfI-13-01

USP vs. UFSC – Simulation 1

73.4 Actions per Role

Figure 1431: USP vs. UFSC – Simula-
tion 1 - UFSC Explorer Actions.

Figure 1432: USP vs. UFSC – Simula-
tion 1 - UFSC Inspector Actions.

Figure 1433: USP vs. UFSC – Simula-
tion 1 - UFSC Repairer Actions.

Figure 1434: USP vs. UFSC – Simula-
tion 1 - UFSC Saboteur Actions.

Figure 1435: USP vs. UFSC – Simula-
tion 1 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 516

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1436: USP vs. UFSC – Simula-
tion 1 - USP Explorer Actions.

Figure 1437: USP vs. UFSC – Simula-
tion 1 - USP Inspector Actions.

Figure 1438: USP vs. UFSC – Simula-
tion 1 - USP Repairer Actions.

Figure 1439: USP vs. UFSC – Simula-
tion 1 - USP Saboteur Actions.

Figure 1440: USP vs. UFSC – Simula-
tion 1 - USP Sentinel Actions.

517 Technical Report IfI-13-01

USP vs. UFSC – Simulation 2

74 USP vs. UFSC – Simulation 2

74.1 Scores, Zone Stability and Achievements

Figure 1441: Summed scores. Figure 1442: Achievement points.

Figure 1443: Zones scores. Figure 1444: Zones scores and
achievement points.

Figure 1445: Zone Stabilities.

DEPARTMENTOF INFORMATICS 518

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP UFSC

1 area10 surveyed10, area20, area10, surveyed20
2 surveyed10, surveyed40, surveyed20 surveyed40
3 surveyed80, proved5
4 area20, proved5
5 proved10
6 proved10
7 surveyed160
8 attacked5
10 proved20
13 attacked10
14 area40
16 surveyed80
19 proved20 area40, surveyed320
20 area80
22 proved40
24 attacked20
27 inspected5
28 inspected5
29 parried5
30 area80
32 attacked5
35 parried10 inspected10
39 parried20
40 attacked10
45 attacked40
46 area160
47 proved80
56 surveyed160
71 inspected10
73 parried40
79 proved40
99 attacked20
103 proved160
132 parried5
133 attacked80
142 parried80
151 parried10
158 parried20
159 attacked40
231 attacked160
250 inspected20
253 proved80
269 attacked80
270 surveyed320
317 parried40
323 parried160
387 attacked320
503 attacked160
535 inspected20
570 parried80
613 parried320
671 attacked640
731 proved160
733 parried160

Figure 1446: Achievements.

519 Technical Report IfI-13-01

USP vs. UFSC – Simulation 2

74.2 Stability

Reason USP % UFSC %

failed away 324 2,16
failed parried 182 1,21 433 2,89
failed random 155 1,03 133 0,89
failed resources 45 0,3 1 0,01

failed 17 0,11
failed attacked 204 1,36 41 0,27
noAction 17 0,11

Figure 1447: Failed actions.

DEPARTMENTOF INFORMATICS 520

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

74.3 Achievements

Figure 1448:
areaValueAchievements.

Figure 1449:
inspectedAgentsAchievements.

Figure 1450:
probedVerticesAchievements.

Figure 1451:
successfulAttacksAchievements.

Figure 1452:
successfulParriesAchievements.

Figure 1453:
surveyedEdgesAchievements.

521 Technical Report IfI-13-01

USP vs. UFSC – Simulation 2

74.4 Actions per Role

Figure 1454: USP vs. UFSC – Simula-
tion 2 - UFSC Explorer Actions.

Figure 1455: USP vs. UFSC – Simula-
tion 2 - UFSC Inspector Actions.

Figure 1456: USP vs. UFSC – Simula-
tion 2 - UFSC Repairer Actions.

Figure 1457: USP vs. UFSC – Simula-
tion 2 - UFSC Saboteur Actions.

Figure 1458: USP vs. UFSC – Simula-
tion 2 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 522

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1459: USP vs. UFSC – Simula-
tion 2 - USP Explorer Actions.

Figure 1460: USP vs. UFSC – Simula-
tion 2 - USP Inspector Actions.

Figure 1461: USP vs. UFSC – Simula-
tion 2 - USP Repairer Actions.

Figure 1462: USP vs. UFSC – Simula-
tion 2 - USP Saboteur Actions.

Figure 1463: USP vs. UFSC – Simula-
tion 2 - USP Sentinel Actions.

523 Technical Report IfI-13-01

USP vs. UFSC – Simulation 3

75 USP vs. UFSC – Simulation 3

75.1 Scores, Zone Stability and Achievements

Figure 1464: Summed scores. Figure 1465: Achievement points.

Figure 1466: Zones scores. Figure 1467: Zones scores and
achievement points.

Figure 1468: Zone Stabilities.

DEPARTMENTOF INFORMATICS 524

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Step USP UFSC

1 surveyed10, surveyed40, area10, surveyed20 surveyed10, area10, surveyed20
2 surveyed40
3 surveyed80 area20, surveyed80, proved5
4 proved5
5 area20 proved10, inspected5
6 area40
7 proved10 attacked5
8 surveyed160
11 attacked5 proved20
12 inspected10
14 surveyed160
19 attacked10
20 proved20
22 area40, proved40
23 parried5
24 inspected10, inspected5
25 inspected20
26 attacked20
27 surveyed320
29 parried10
32 attacked10
37 area80
40 attacked40
47 proved80
67 attacked20 attacked80
71 parried20
91 inspected20
94 parried40
100 proved40
102 parried5
106 proved160
118 parried80
123 area160
127 parried10
143 attacked40
155 attacked160
186 parried20
204 surveyed320, parried160
266 area320
285 parried40
287 proved80
319 attacked320
354 attacked80
441 parried320
603 parried80
613 attacked640
641 attacked160
734 proved160

Figure 1469: Achievements.

525 Technical Report IfI-13-01

USP vs. UFSC – Simulation 3

75.2 Stability

Reason USP % UFSC %

failed away 367 2,45 1 0,01
failed parried 143 0,95 548 3,65
failed random 174 1,16 156 1,04
failed resources 17 0,11 1 0,01

failed 43 0,29
failed attacked 268 1,79 29 0,19
noAction 43 0,29

Figure 1470: Failed actions.

DEPARTMENTOF INFORMATICS 526

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

75.3 Achievements

Figure 1471: areaValueAchievements. Figure 1472:
inspectedAgentsAchievements.

Figure 1473:
probedVerticesAchievements.

Figure 1474:
successfulAttacksAchievements.

Figure 1475:
successfulParriesAchievements.

Figure 1476:
surveyedEdgesAchievements.

527 Technical Report IfI-13-01

USP vs. UFSC – Simulation 3

75.4 Actions per Role

Figure 1477: USP vs. UFSC – Simula-
tion 3 - UFSC Explorer Actions.

Figure 1478: USP vs. UFSC – Simula-
tion 3 - UFSC Inspector Actions.

Figure 1479: USP vs. UFSC – Simula-
tion 3 - UFSC Repairer Actions.

Figure 1480: USP vs. UFSC – Simula-
tion 3 - UFSC Saboteur Actions.

Figure 1481: USP vs. UFSC – Simula-
tion 3 - UFSC Sentinel Actions.

DEPARTMENTOF INFORMATICS 528

MAPC 2012 EVALUATION AND TEAMDESCRIPTIONS

Figure 1482: USP vs. UFSC – Simula-
tion 3 - USP Explorer Actions.

Figure 1483: USP vs. UFSC – Simula-
tion 3 - USP Inspector Actions.

Figure 1484: USP vs. UFSC – Simula-
tion 3 - USP Repairer Actions.

Figure 1485: USP vs. UFSC – Simula-
tion 3 - USP Saboteur Actions.

Figure 1486: USP vs. UFSC – Simula-
tion 3 - USP Sentinel Actions.

529 Technical Report IfI-13-01

	I Overview
	Introduction
	Related Work
	The contest from 2005–2012

	MAPC 2012: Agents on Mars
	The Scenario
	Changes and Modifications to the Scenario from 2011

	The Tournament
	Participants and Results
	Overview of the Teams' Strategies

	Interesting Simulations
	SMADAS-UFSC vs. Python-DTU – Simulation 1
	Achievements and Buying Strategy
	Zone Stability
	Actions per Role

	SMADAS-UFSC vs. Python-DTU – Simulation 2
	Zone Scores and Stability
	Achievements and buying strategy
	Actions per Role

	PGIM vs. AiWYX – Simulation 1
	Scores
	Zone Stability
	Achievements
	Actions per Role

	TUB vs. LTI-USP – Simulation 1
	Scores
	Zone Stability
	Achievements
	Actions per Role

	Streett vs. TUB – Simulation 2
	Scores
	Zone Stability
	Achievements
	Actions per Role

	Summary, Conclusion and Future of the Contest

	II Team Descriptions
	SMADAS-UFSC
	Python-DTU
	TUB
	LTI-USP
	AiWYX
	PGIM
	Streett

	III All Results in Great Detail
	AiWYX vs. PGIM – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. PGIM – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. PGIM – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Python-DTU – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Python-DTU – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Python-DTU – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Streett – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Streett – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. Streett – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. TUB – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. TUB – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. TUB – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. USP – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. USP – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	AiWYX vs. USP – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Python-DTU – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Python-DTU – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Python-DTU – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Streett – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Streett – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. Streett – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. TUB – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. TUB – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. TUB – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. USP – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. USP – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	PGIM vs. USP – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Python-DTU vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Python-DTU vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Python-DTU vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. Python-DTU – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. Python-DTU – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. Python-DTU – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. TUB – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. TUB – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. TUB – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. USP – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. USP – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	Streett vs. USP – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. Python-DTU – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. Python-DTU – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. Python-DTU – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. USP – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. USP – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	TUB vs. USP – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. Python-DTU – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. Python-DTU – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. Python-DTU – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. UFSC – Simulation 1
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. UFSC – Simulation 2
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

	USP vs. UFSC – Simulation 3
	Scores, Zone Stability and Achievements
	Stability
	Achievements
	Actions per Role

