Noname manuscript No.
(will be inserted by the editor)

Multi-Agent Programming Contest 2017
The twelfth edition of the MAPC

Tobias Ahlbrecht - Jiirgen Dix -
Niklas Fiekas

Received: date / Accepted: date

Abstract We present the twelfth edition of the Multi-Agent Programming Con-
test!, an annual, community-serving competition that attracts groups from all over
the world. Our contest facilitates comparison of multi-agent systems and provides
a concrete problem that is interesting in itself and well-suited to be tackled in edu-
cational environments. This time, seven teams competed using strictly agent-based
as well as traditional programming approaches.

Keywords multi-agent systems - programming - competition

1 Introduction

In this introductory article to the special issue, we (1) briefly introduce our Contest
and its development, (2) explain the scenario with a focus on the changes that were
necessary compared to the 2016 edition, (3) introduce the seven teams that took
part in the tournament, (4) analyze and interpret a few interesting matches, and
(5) evaluate each team’s performance and strategy from a bird’s-eye view.

The Multi-Agent Programming Contest (MAPC) is an annual international event.
It was initiated in 2005 by Jiirgen Dix and Mehdi Dastani (with a lot of help from
Peter Novak who joined the following years). In 2017, the competition was orga-
nized and held for the twelfth time. The goal of the Contest is to stimulate research
in the field of programming multi-agent systems by (1) identifying key problems,
(2) developing suitable benchmarks, (3) comparing agent programming languages
and platforms, and (4) compiling test cases which require and enforce coordinated
action that can serve as milestones for testing multi-agent programming languages,
platforms and tools. Moreover, we aim to support educational efforts in the design

Department of Informatics

Clausthal University of Technology

Julius-Albert-Str. 4

38678 Clausthal-Zellerfeld, Germany

E-mail: {tobias.ahlbrecht,dix,niklas.fiekas}@tu-clausthal.de

! https://multiagentcontest.org

2 Tobias Ahlbrecht et al.

and implementation of MAS’s by preparing our ready-made environment which
provides a concrete problem for agent systems to solve.

For the Contest each participating team develops a team of agents which re-
motely connects to our Contest server where the current scenario (i.e. the game) is
being run. The Contest server sends the current game state in the form of percepts
to each agent and expects an executable action in return. The gathered actions are
executed and the game state is advanced. This cycle is repeated until a predefined
number of steps is reached.

Detailed information about the strategies of the teams from each team’s own
perspective can be found in the subsequent papers in this volume.

1.1 Related work

For a detailed account on the history of the contest as well as the underlying
simulation platform, we refer to [3,6,10,11,7,5,8,14,2,1]. A quick non-technical
overview appeared in [4].

There is a good number of agent and more general Al contests, competitions
and challenges which have been organized in the past decade.

Firstly, the Trading Agent Competition? is one of the few strictly agent focused
contests. Here, agents have to solve trading related problems, e.g. managing a sup-
ply chain. Since 2012, the related Power Trading Agent Competition® specializes on
agents trading in the energy market. Each team only consists of a single “broker”
agent.

Secondly, the General Game Playing* competitions do not focus on team-based
games which require interaction and cooperation. Interestingly, the game is never
known to the participants beforehand. Instead, a game description language is
employed and agents have to understand each game’s rules themselves.

Google’s AT challenge® provides rather simple games requiring good strategies.
Unfortunately, the last challenge was in 2011.

The AI-MAS (Winter) Olympics® features a more sophisticated scenario called
“Crafting Quest 3”. As its name implies, agents are among the desired solution
approaches. The solutions have to be implemented in Java however.

A number of Planning Competitions”, e.g. the RoboCup Logistics League®, focus
mostly on the single aspect of planning in agent systems.

Finally, there are a lot game-based challenges, some with existing games, like
the Student StarCraft AI towrnament® or the Mario AI Championship [13], and some
with games created specifically for the challenge, like BattleCode®. All of these
games impose some more or less hard restrictions on the program playing the
game. Some have to play the game in “real time” while others require a specific

https://wuw.sics.se/projects/trading-agent-competition
http://powertac.org/

http://games.stanford.edu/

http://aichallenge.org/

http://aiolympics.ro/

http://ipc.icaps-conference.org/
http://www.robocup-logistics.org/sim-comp

© 00 N O U ke W N

http://sscaitournament.com/

-
o

https://wuw.battlecode.org

Multi-Agent Programming Contest 2017 3

programming language or limit the amount of bytecode (i.e. instructions on the
Java Virtual Machine) that can be used.
To summarize, our Contest differs from other competitions by

— allowing any programming language or approach to be used,

— not focusing on solutions for a particular problem domain, and

— featuring a rather complex game which requires multiple agents to coordinate
their actions.

2 MAPC 2016 and 2017: The City scenario

In this year’s scenario'!, two teams of 28 agents try to earn as much virtual money
as possible. To do this, they have to navigate through realistic city graphs, im-
ported from OpenStreetMap'?, and complete as many high-valued jobs as possible.
These jobs are randomly generated and require the agents to obtain a certain
number of different items which have to be delivered to one of multiple storage
locations. Items can be either bought in shop facilities or gathered from resource
nodes. These items however are only the source material for constructing assem-
bled items in a workshop facility. So, items have a name, a volume and optionally a
number of requirements, i.e. which other items and tools are required to assemble
one instance of this item. Jobs only request assembled items.

Each agent belongs to a role, which defines its maximum battery charge, loading
capacity and which tools the agent is allowed to use. In order to increase speed and
decrease capacity the roles are: trucks, cars, motorcycles, and drones. Drones are
the only vehicles that are not bound to streets. To recharge their batteries, agents
can visit charging stations which restore a certain amount of charge per step.

Each job has a start time, an end time, a reward specifying how much money
a team receives upon successful completion, and a number of requested items.
There are now three different kinds of jobs. Firstly, regular jobs do end once the
first team has delivered all requested items or its time limit is reached. Either way,
the second team cannot continue completing the job anymore. If a job ends, each
team that did not complete it may retrieve the items it already delivered towards
the partial completion of said job.

Secondly, auctions are preceded by an auctioning phase which lasts a couple of
steps. During this phase, agents may place their bids. After the phase, the job gets
assigned to the team which bid the lowest amount of money. This is because this
value is also the reward the team will receive upon successful completion. Auctions
are advantageous since the assigned team does not have to fear the other team
completing it first. On the other hand, a team has to pay a fine if it does not
complete an assigned auction, since it could hoard auctions otherwise.

Thirdly, the new missions are like regular jobs, only that one “private” instance
is created for each team. Similar to auctions, teams also have to pay a fine if they
do not complete missions. This is to ensure that ignoring missions is discouraged.

Points for the overall competition are distributed at the end of each simulation.
The winning team gets 3 points, unless it did not make a profit, in which case it
only receives 2 points. In case of an unlikely draw, each team is awarded 1 point.

11 the complete documentation is linked from https://multiagentcontest.org/2017/
12 nttps://www.openstreetmap.org

4 Tobias Ahlbrecht et al.

This year, with 7 teams and 3 simulations for each combination of teams, there
was a maximum obtainable score of 54 points.

The strengths of the scenario lie in the amount of coordination and planning
that is required among agents from the same team. Then again, as noted last year
already, interaction with the opponent team is quite limited, apart from possible
resource contention in terms of available items and jobs (externalities).

In the next section, we take a closer look at the improvements compared to
the first implementation of the scenario.

3 Changes for 2017

Drawing from our experiences with the 2016 edition, we made a number of changes
to reinforce certain aspects of the scenario and alleviate some of its previous short-
comings. As always, we scaled the scenario up: it now features 28 agents per team.
Previously, we had four agents per role. The number for each role was doubled,
except for drones, to put more emphasis on slower vehicles.

3.1 Cooperation

Last year’s instance of the scenario has shown that agents do not cooperate at all
(not even with agents of the same team) if they are not explicitly required to do
so. While the assemble action was designed to be such an explicitly cooperative
element, using it was only encouraged but not required. Thus, many teams (if not
all) did not even implement some assembling functionality for their agents and
made do with jobs where no assembly was required.

To get the agents to more cooperation, we assured that each job created by
the system requires only items which need assembly. So, to make some profits, the
teams now have to make plenty of use of the assemble action.

3.2 Proactiveness

In the previous Contest, we observed rather long phases of the simulation where
agents were only waiting for the next profitable job, effectively doing nothing else.
Therefore, we wanted to reward those agents which actively prepare for possible
future events. To this end, we made two changes.

On the one hand, we removed the cost that was associated with charging
agents. This now allows the agents to travel the map and acquire or move items
without getting a large penalty if these preparations turn out to be useless in the
end.

On the other hand, resource nodes were introduced to give agents an addi-
tional occupation when they are not actively pursuing a job. Resource nodes are
associated with a special resource item that agents can obtain by using the gather
action at a node’s location. Gathering one instance of the resource takes a fixed
number of actions, so employing more agents will yield more resources. If agents
from different teams work on the same node, however, the result will depend on

Multi-Agent Programming Contest 2017 5

the order in which the actions are executed (which is reshuffled for each step), so
that agents cannot predict the outcome.

Compared to shops, items from resource nodes will take more time to be
acquired but have no monetary cost associated: they are freely available.

In summary, agents now have valid things to do in their off time, which are
very likely to give their team a serious advantage over a team which only waits
during those times.

3.3 Comparability

The 2016 parameter configuration allowed for vastly different simulation instances.
While this was good for providing a wide variety of different simulations, it made
it also more difficult to compare different simulation runs. This year, we modi-
fied the complete random generation mechanism and set new parameters, so that
simulation instances with the same parameters still differ in their details while re-
taining an overall more uniform shape (e.g. in the number, structure and value of
items). We could have opted to generate identical simulation instances each time,
however, this would give teams who play later an unfair advantage, as they could
learn and therefore predict exactly what happens in later simulations.

Also, the new missions were devised to directly compare agent teams. Since
both teams get the exactly same mission at the same time, we can compare the
time it took each team to complete the mission to get a first performance indicator
(aside from which team won the game).

3.4 Uncertainty

Finally, to increase the amount of uncertainty in the environment and therefore re-
ward agent teams which are more adaptable, we introduced blackouts at charging
stations. With a small probability, each charging station may stop working for
a couple of steps now. Agents can find out about the state of a charging station
only by attempting to charge at that facility and subsequently failing.

4 The tournament

The tournament took place during four days, from 18th to 21st September. As
always, the main phase was preceded by a qualification phase to ensure that all
teams were able to receive messages from and send actions to the contest server.
Each team had to achieve a failure rate below 5% to be admitted to the Contest
itself. This did not prove to be a big hindrance to any one of the seven teams.

4.1 Simulation definition

Each simulation once again consisted of 1000 discrete steps. The three simula-
tions of each match had different parameters to test a variety of different settings.

6 Tobias Ahlbrecht et al.

However, each match had the same set of parametrized simulations to facilitate
comparability among different matches (see also Section 3.3).

We chose the concrete parameters to ensure certain evolutions in the sim-
ulations’ difficulty. The first simulation of each set was played on a rectangular
excerpt from the street graph of Paris and intended to be the “easiest” one to play.
From there, we increased the size of the map for the second simulation (Tokyo)
and again for the third one (Mexico City). Bigger maps imply more facilities and
more available items (because there are more shops and resource nodes) but at the
same time longer routes to arrive at specific locations. Additionally, we increased
the difficulty level of jobs for each simulation to require more distinct and more
complex items per job. Also, we shortened the average time limit on each job.

4.2 Participants and results

This year, the team count went up slightly: seven teams from around the world
registered and made it through the qualification phase (see Table 1).

Team Affiliation Platform/Language

BusyBeaver Clausthal University of Technology Pyson (Jason)

Chameleon Shahid Beheshti University Java

Flisvos 2017 none Python

Jason-DTU Technical University of Denmark Jason

lampe Clausthal University of Technology C++

SMART-JaCaMo Pont.iﬁcal Catholic University Jason, CArtAgO, Moise
of Rio Grande do Sul

TUBDAI Technical University of Berlin Python

Table 1: Participants of the 2017 Edition.

Table 2 summarizes the results of this year’s Contest. BusyBeaver secured a
flawless victory, not losing a single simulation, thus netting the maximum number
of 54 points. Tied for second place are Flisvos 2017 and, once again, Jason-DTU
with 36 points. A close fourth place went to SMART-JaCaMo with only 3 points

Pos. | Team Points | Simulations won

1 BusyBeaver 54 18
2 Flisvos 2017 36 12
2 Jason-DTU 36 12
4 SMART-JaCaMo 33 11
5 lampe 16

6 TUBDAI 6 2
7 Chameleon 4 2

Table 2: Results.

Multi-Agent Programming Contest 2017 7

less. Still almost half those points brought team lampe the fifth place and TUB-
DAI made sixth place with 6 points still. Finally, the seventh place went to team
Chameleon due to lots of problems on their side.

Most of the simulations awarded 3 points. Only lampe did not turn a profit in
two simulations against TUBDAI and Chameleon but still won by spending less,
thus only getting 2 points for those simulations.

We gratefully acknowledge Springer’s support over the years (many thanks to
Alfred Hofmann who is responsible): the winner gets a voucher worth 500 Euros
(in Springer books) and the runner-up one worth 250 Euros.

4.3 The teams and their agents

In this section we collect information about the participants'3, their development
efforts and their agent team strategies from a high-level viewpoint. For more de-
tails, we refer to each individual team description paper in this special issue.

BusyBeaver: The team BusyBeaver, one of the two single person groups, used the
Pyson'* agent platform which is an implementation of AgentSpeak based on
Jason [9]. Around 300 hours were spent over the course of 3 to 4 months, of
which 200 were dedicated to implementing the system. The agents’ strategy is
a heavily proactive one, always trying to assemble items in advance. A leading
truck agent does most of the planning. Coordination is mostly achieved through
the contract net protocol. The agents are further statically assigned to groups
for acquiring, assembling and delivering items.

Flisvos 2017: Flisvos 2017, the other single person team, invested an approximate
120 hours into producing a final result of almost 5000 lines of code. As last year,
the agents are written in Python and completely controlled by a centralized
“mind”. Their strategy is to complete the jobs which have all their requirements
already available (in shops or carried by the agents themselves). Proactively,
idle agents try to occupy the shops or even buy some items which might be
useful in the future.

Jason-DTU: The team Jason-DTU consists of 4 people, 2 master students and 2
supervisors, who invested a combined 300 hours into the project. Their agents
are implemented using the Jason agent framework with a rather big part writ-
ten in Java. Jobs are assigned to a group of agents by a centralized entity,
where each group is then responsible for deciding how to complete that job.

SMART-JaCaMo: The 7 members of team SMART-JaCaMo spent approximately
120 hours, mainly improving their team from 2016, resulting in 4354 lines of
code. With that, their code base has doubled after all. The agents also use the
contract net protocol for coordination (similar to BusyBeaver) and additionally
features of MOISE [12], an “organisation oriented programming framework”
for multi-agent systems.

lampe: The lampe team again consists of two people, one of which also consti-
tutes the team BusyBeaver. lampe dedicated around 200 hours to achieving a
final code line count of 8512. Similar to Flisvos 2017, these C++ agents are

13 Unfortunately, we will not report on the Chameleon team as they decided to leave the
Contest after having played their matches.
14 nttps://github.com/niklasf/pyson

8 Tobias Ahlbrecht et al.

Team hours | lines coordination
BusyBeaver 300 2000 | mostly centralized
Flisvos 2017 120 5000 centralized
Jason-DTU 300 5361 | mostly centralized

SMART-JaCaMo | 120 4354 decentralized
lampe 200 8512 centralized
TUBDAI 300 5056 decentralized

Table 3: Key details.

also centrally controlled. The team’s strategy is to internally simulate multiple
strategies and chose the one with the best outcome based on custom heuristics.

TUBDAI: The 4 people of team TUBDAI spent around 300 hours implementing
5056 lines of Python code with the goal to evaluate their decision-making
and planning framework from a multi-robot context. The agents form 4 static
groups who work on jobs independently, only communicating to avoid working
on the same job.

Chameleon: Unfortunately, the team Chameleon failed to submit anything after
the Contest. Due to this and coupled with their performance, we will exclude
them from most of the following analysis.

Some of the key details have been summarized in Table 3. From these numbers,
we can see that all participants who have started a new team (i.e. a new codebase
or approach) have estimated their efforts at roughly 300 hours. At the same time,
the teams who evolved their team from last year invested “only” 120 to 200 hours.

5 Performance of the teams

In this section, we will take a closer look at the outward behavior of each team and
how it affected the outcome. Key indicators we will analyze include the actions an
agent team used, as well as the number and types of jobs a team completed and
how long it took the agents to complete jobs in general. In the end, we will look
at the agents’ stability in terms of action failure codes.

BusyBeaver: The Contest’s winning team distinguishes itself by overall very fast job
completion times. In most simulations, the average completion time was below
that of the opposing team. In the few cases where the other team had a better
average time, that team only completed a minor amount of jobs, which makes it
easier to have a good average time. This fact also enabled the team to complete
significantly more jobs than each other team. Looking at the comparison of
mission times (i.e. the identical jobs that each team had to complete at the
same time), we again see that BusyBeaver was way faster at dealing with most
of the missions. Regarding auctions, we can see no clear strategy. The team
either did a lot of or almost none of the auctions per simulation, but never a
medium amount.

When we look at the team’s action counts, we see a naturally high number of
assembly related actions due to the high number of completed jobs. Also, the
actions give and receive where used frequently indicating a good division of
work. The only other team to make use of these actions was lampe, however, to

Multi-Agent Programming Contest 2017

a lesser degree. BusyBeaver did not use actions related to storing items. Instead,
the truck agents seemingly served as mobile storage units. Additionally, the
team used a lot of gather actions to get “free” resource items. They make up
around 10% of the team’s total actions, which agrees with the team’s overall

perceived proactivity.

A typical action distribution for BusyBeaver is given in Figures 1 and 2.

1,000 - 946
800 -
o 600 [5i7
=]
2
i
3
il 400 |~
200
0 0 0 0 0
0 | S — —_— _— —_
o T T T
. @ o @
& 0@4 é& & _4@&@
@ &
e
&

[0 0 BusyBeaver [l 0 Jason-DTU

Fig. 1: BusyBeaver vs. Jason-DTU sim 2 item transfer actions

To conclude, the team’s high (but still reasonable) proactivity has clearly paid

off.

Jason-DTU: The agents of Jason-DTU completed a fair amount of jobs somewhere
in the region of one half to two thirds of all completed jobs per simulation
against teams of the same or lower ranking. However, the average time spent
working on each job does not deviate much from those opponent teams’ times.
Often, it is even a few steps more in comparison. Looking at average mission
times, exemplarily listed in Table 4, reinforces the picture: there is no clear

trend for either team.

Mission | Reward | Jason-DTU | SMART-JaCaMo
1 2716 62 55
2 3008 31 30
3 1548 17 24
4 2257 29 32

Table 4: Jason-DTU vs. SMART-JaCaMo sim 2 mission times

10 Tobias Ahlbrecht et al.
!
2,602 [0 BusyBeaver 1 0 Jason-DTU
2,000 =
2 1,375
e ’
el
Q
&
F 1,000 | 905
507 099
114 D .
ol U= 06 oo [|
T T T T &\
@\e @\@ @60 @g,o N
@ & o & §¥
& o Xl <
& 9
&
>

Fig. 2: BusyBeaver vs. Jason-DTU sim 2 job related actions

Auction jobs seem to have played a key role in gaining the edge over Flisvos
2017 in one out of three simulations.

Again looking at the agents’ actions, we see the second highest amount of
gather actions after BusyBeaver, suggesting again that proactively gathering
materials paid off after all. Aside from that, the team did not use the actions
give and receive or store and retrieve at all. A typical action distribution
for one simulation can also be seen in Figures 1 and 2.

Flisvos 2017: The other team to share the second place, Flisvos 2017, completed

more jobs than Jason-DTU at comparably average times. The agents completed
most of the jobs against SMART-JaCaMo, except for their third simulation,
where SMART-JaCaMo was able to get two more regular jobs done and win in
a photo finish. Unfortunately, Flisvos 2017 did not consider auction jobs at all.
The team’s action profile shows a team focused on “core functionality”. The
agents never used actions for storing items and neither for transferring items
between agents. Also, as noted, actions related to auctions were not used at
all. The same holds for the gather action.

SMART-JaCaMo: The team SMART-JaCaMo completed a rather low number of

regular jobs with average completion times on par with Jason-DTU. In the
match against Jason-DTU we see that SMART-JaCaMo begins to shine when
more auctions are involved. In their first simulation, they were able to complete
22 relatively high-valued auctions, while Jason-DTU only completed 6, which
let them capture a victory despite having completed only half the amount of
regular jobs as Jason-DTU.

Interestingly, the agents of SMART-JaCaMo were the only ones to employ the
store and retrieve actions in their strategy. Unfortunately, this does not re-
flect in faster average completion times. The team also did not use the new

Multi-Agent Programming Contest 2017 11

#actions

gather action. A sample action profile for this team can be seen in Figures 3
and 4.

7 00 SMART-JaCaMo [l 0lampe
152 151
150 -]] N
134
114
100 - N
50 [~ N
25
0 0 0 0 0
0 - — —_— d —d_ —— .
@\ T T T b‘
o8 & @ L &
& @00\ O}»O)&\,@ .AQ;Q
< <© t}Q\r\
.xQJAQj/
&
&‘Z;

Fig. 3: SMART-JaCaMo vs. lampe sim 3 item transfer actions

lampe: The lampe team got a number of regular jobs done similar to SMART-

JaCaMo, however, the agents were outclassed regarding auctions. Against Flisvos
2017, the team mostly completed jobs with a relatively low reward, however,
the team could win one of these simulations due to many high-valued auctions.
The average time spent on each job was comparable to the opponent team in
some simulations and exceptionally high in others.

lampe was the only team to make use of the give and receive actions, which
indicates a good degree of cooperation among agents. Also, lampe used the
retrieve _delivered action quite often, which might be associated to the high
job completion times in some simulations. The gather action was also not used
by lampe at all. A typical action distribution for the team is also given in
Figures 3 and 4.

TUBDAI: The team TUBDAI completed rather few jobs overall, but almost half

of a simulation’s jobs in some cases. However, this was mostly outweighed
by high spendings. The average job completion time is also not exceptionally
high and even better in direct comparison in the match against lampe, which
lends further credibility to unusual high investments. Overall, the team did not
complete many auction jobs.

TUBDATI used the gather action to some degree and, as many other teams, did
not make use of give and receive or store and retrieve.

12 Tobias Ahlbrecht et al.

1,673 0 0 SMART-JaCaMo [0 lampe
1,500 |-
2 1,000 |-
S
=
Q
<
3
500 L 47T
243229
O,DD L] 181 00 o0
I I I I &\
¥ ¥ R o ¢
L N
B @vq? ‘o*b <
&
kel

Fig. 4: SMART-JaCaMo vs. lampe sim 3 job related actions

5.1 Agent stability

FEach agent action returns either successful or one of a number of failure codes
which are specific to each action type. We recorded the total counts of each failure
code per team, listed in Table 5, to get an understanding of where each team might
have had some problems and where teams acted more reliably than others.

Jason Busy SMART
Reason lampe DTU Chameleon TUBDAI Flisvos Beaver JaCaMo
wrong_param - - 2391 1 - 1 -
wrong_facility - - 2 813 - 700 -
failed_tools 53 4889 18446 29112 560 914 1451
failed_location - 53 4087 1882 - - -
failed_capacity 8 466 1054 1293 - 830 -
no_route 1058 1 56 727 - - -
item_amount 55 1415 2332 8716 57 148 815
job_status 133 145 63 1825 24 241 126
failed 5110 4996 5040 5067 5112 5008 5046
useless 325 - - 320 2 134 -
unknown_agent - - 8741 - - - -
counterpart 171 8154 4314 42835 705 30346 4072

Table 5: Total failure counts

The code wrong_param indicates a general problem in the implementation, where
action parameters are not correctly set or sent to the server. Fortunately, only the

Multi-Agent Programming Contest 2017 13

team Chameleon suffered a noteworthy amount of this error. The other teams
encountered no or in the worst case one instance, which is very good considering
that each team had to submit 168,000 actions over the course of 6 matches.

The wrong_facility failure occurs when an agent tries to perform an action
that is related to a specific facility, e.g. assemble in a workshop, while it is not
located in such a facility. This was mainly encountered by TUBDAI and BusyBeaver
and may indicate a minor lack in adaptivity, that is, agents having beliefs that
contradict the actual environment state.

failed tools shows a problem with item assembly. This was most promi-
nently encountered by TUBDAI, similar to other assembly related failure codes like
counterpart, which may occur when the assembly initiator failed or item_amount,
which is basically the same as failed_tools but for items. The reason for this is
most likely that their agents started to send assemble and assist_assemble actions
as soon as they were ready regardless of whether each agent planned for the assem-
bly was ready. With some more communication, this could have been optimized,
e.g. by recharging agents. The numbers for Jason-DTU show a similar trend, only
less pronounced. Finally, all teams showed a considerable number of these failures
with lampe having the best numbers and Flisvos 2017 also being very good.

The job_status code can have multiple reasons, but most frequently it is due
to an agent trying to deliver items towards a job that has already ended, either
regularly or having been completed by the opponent. Most teams encountered
rather few of those, between 24 and 241, while TUBDAI had the highest count
with 1825 indicating some potential for optimization.

The useless result is only received when an agent tries to assist with assembly
but has no items to contribute. This may point to either agents having “forgotten”
to execute some sub-task or situations where another agent who is also part of
the assembly can also contribute these items. The latter case, being more likely,
shows again where agents could have done something more useful with their time.
Fortunately, this failure was only encountered around 100 to 300 times by lampe,
TUBDAI and BusyBeaver.

To conclude, we did not see high failure counts in this year’s Contest. Even the
numbers that appear quite high in comparison cannot be associated with some
deep underlying problems but only with some more aspects which could have
been optimized. The “best” results have been recorded for Flisvos 2017 closely
followed by lampe.

6 Interesting simulations

In this section, we will have a closer look at particular simulations and how they
played out. We will try to carve out a few more details and draw some conclusions.
6.1 Flisvos 2017 vs. Jason-DTU, SMART-JaCaMo, lampe

Looking at all simulations, we can see that teams mostly performed uniformly, i.e.
in any given matchup, most often one team won all of its 3 simulations. However,

Flisvos 2017 lost one simulation each against Jason-DTU, SMART-JaCaMo and
lampe.

14 Tobias Ahlbrecht et al.

-10° -10°
T T T T
Seed capital Seed capital R
L4 Flisvos 1 M — Flisvos R
- - - Jason-DTU - -~ Jason-DTU o
1.2 -y
2 1
o
=
S
= 0.8
0.6
ol 04
1 1 1 1 1 1 1 1
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Step Step
(a) Sim 1 (b) Sim 2

Fig. 5: Money curves Flisvos 2017 vs. Jason-DTU

For example, Flisvos 2017 clearly won the first simulation against Jason-DTU,
while Jason-DTU was able to narrowly win their second encounter (compare Fig-
ures 5a and 5b).

Comparing all three simulations between Flisvos 2017 and Jason-DTU, we see
that Jason-DTU usually gets to complete around 20% of regular jobs. In the second
simulation however, there was a bigger amount of auction jobs. Flisvos 2017 earned
a total of 148k without completing any auction jobs. Jason-DTU made 42k from
regular jobs and another 106k from auction jobs alone. Additionally, both teams
earned 9k from the missions. So, the higher number of auction jobs allowed Jason-
DTU to receive as much money as Flisvos 2017, but Jason-DTU still finished
about 10k in the lead. Thus, we may conclude that Jason-DTU could choose more
profitable jobs, i.e. those were the necessary investments (to buy items) were lower.

6.2 BusyBeaver vs. Jason-DTU simulation 1

In general BusyBeaver manages to complete jobs much faster than Jason-DTU (an
average of 7 steps compared to 33 steps, and similar times for the identical missions
in this simulation). This difference could be explained by more proactive behavior.
Frequent usage of give and receive also indicates better coordination.

Nonetheless this simulation was closely contested and the money curve (Fig-
ure 6) shows an interesting progression: The strategies differ already in the opening
phase. At simulation step 10 BusyBeaver has invested more than 20% of their start-
ing capital in a variety of 10 different items. Meanwhile Jason-DTU chose a more
conservative approach and sent their agents to gather free resources.

The first half of the simulation consists of BusyBeaver trying to break even
with their initial investment. After that Jason-DTU is still ahead and now also
has a varied repertoire of collected items at their disposal. However in the second
half jobs get more rare, making it more likely that both teams race to finish the
same job. This is where the faster job completion rate really started to shine and
eventually BusyBeaver came out on top. All in all BusyBeaver completed 31 regular

Multi-Agent Programming Contest 2017 15

-10%

Seed capital
—— BusyBeaver
- - - Jason-DTU

! ! ! !
0 200 400 600 800 1,000
Step

Fig. 6: Money curves for sim 1 of BusyBeaver vs. Jason-DTU

jobs at an average reward of 2697. Jason-DTU completed 17 higher paying jobs at
an average reward of 3367 and 4 auctions.

7 Conclusion and outlook

Once again we have seen an interesting Contest with very different teams, using
agent-based as well as conventional programming approaches and frameworks. Of
course, we are happy that once more an agent-based approach took the crown.

We evolved our scenario based on feedback and observations from the previous
edition, however, there are still some points we need to address for future editions.
Firstly, the parameters for the current scenario are still difficult to set in the
“right” way. The simulations should neither be unmanageable, nor should simple
fixed strategies lead to an easy win.

This year, we saw a rather simple approach winning, probably enabled by a
too conservative parameter range. Our intention was to not make the scenario too
difficult, since last time, assembly was a big problem and not used to a satisfying
degree. This time, mandatory assembly already made for a significant increase in
difficulty.

Looking at previous scenarios, they only required a handful of parameters.
While this was indeed restrictive on the variety of simulation instances, those
remaining instances were far more likely to be “good” ones, as the game itself had
to be viable in all circumstances.

For example, the Agents on Mars scenario only required a graph structure with
a certain connectedness. The game itself was more or less the same on any graph
then, which has both good and bad sides, as noted above.

One of our goals for our next scenario therefore is to find a better balance
between having too many parameters, making the game prone to suboptimal con-

16 Tobias Ahlbrecht et al.

figurations, and too few parameters, leaving only a small spectrum of possible
simulation instances.

In the future, we would also like to improve the spectator’s experience. In the
current scenario, it is very difficult to track what happens, even with a few seconds
between steps, so that most people only track the monetary score and otherwise
only look for obviously erratic behavior of agents. In previous scenarios, it was
much easier to see where the interesting behavior was emerging. Of course, this
is not only a bad thing. A scenario that is hardly traceable by human users can
make for a good one to be solved by agent systems.

As always, we wish (and plan) for a scenario that facilitates automatic analysis.
Once again, we used a number of statistics to derive conclusions about each agent
team. However, it would be great if the scenario could automatically highlight
interesting situations. Some work on automated detection of such situations or
emergent behavior in general has already been done, e.g. in [16] or [15].

In a similar direction, we are still mostly looking at agent implementations as
opposed to benchmarking agent platforms. To get a notion of the suitability of each
platform, we refer to each participating team’s subsequent paper and especially
the questions and short answers part we had each team fill in.

Last but not least, we still have not found a magic formula that allows us
to make the scenario inherently benefit purely agent-based approaches. As we do
not prevent traditional programming approaches from entering, such centralized
systems are still being implemented and achieve good results (although empirically
they have a fairly low chance of winning the Contest).

To conclude, we improved last year’s scenario to address some of its issues,
while the core challenges regarding our scenario design still remain to be solved,
hopefully by one of our future games. We are also happy to note that our platform
is used in quite a number of educational efforts: most of this years’ teams arose
from student projects or courses.

Acknowledgements We would like to thank Alfred Hofmann from Springer for his continu-
ous support for more than 10 years now, and for endowing the price of 500 Euros in Springer
books.

Multi-Agent Programming Contest 2017 17

References

10.

11.

12.

13.

14.

. Ahlbrecht, T., Bender-Saebelkampf, C., de Brito, M., Christensen, N.C., Dix, J., Franco,

M.R., Heller, H., Hess, A.V., Hefller, A., Hiibner, J.F., Jensen, A.S., Johnsen, J.B., Koster,
M., Li, C., Liu, L., Morato, M.M., @rum, P.B., Schlesinger, F., Schmitz, T.L., Sichman,
J.S., de Souza, K.S., Uez, D.M., Villadsen, J., Werner, S., Woller, @.G., Zatelli, M.R.:
Multi-Agent Programming Contest 2013: The teams and the design of their systems.
In: M. Cossentino, A.E. Fallah-Seghrouchni, M. Winikoff (eds.) Engineering Multi-Agent
Systems - First International Workshop, EMAS 2013, St. Paul, MN, USA, May 6-7, 2013,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 8245, pp. 366—390.
Springer (2013)

. Ahlbrecht, T., Dix, J., Koster, M., Schlesinger, F.: Multi-Agent Programming Contest

2013. In: M. Cossentino, A.E. Fallah-Seghrouchni, M. Winikoff (eds.) Engineering Multi-
Agent Systems - First International Workshop, EMAS 2013, St. Paul, MN, USA, May
6-7, 2013, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8245, pp.
292-318. Springer (2013)

. Ahlbrecht, T., Dix, J., Schlesinger, F.: From testing agent systems to a scalable simu-

lation platform. In: T. Eiter, H. Strass, M. Truszczynski, S. Woltran (eds.) Advances
in Knowledge Representation, Logic Programming, and Abstract Argumentation. Essays
Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, vol. 9060, pp. 47-62. Springer (2014)

. Behrens, T., Dastani, M., Dix, J., Hiibner, J., Koster, M., Novak, P., Schlesinger, F.: The

Multi-Agent Programming Contest. AI Magazine 33(4), 111-113 (2012). URL https:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2439

. Behrens, T., Dastani, M., Dix, J., Késter, M., Novédk, P.: The multi-agent programming

contest from 2005-2010: From collecting gold to herding cows. Annals of Mathematics
and Artificial Intelligence 59, 277-311 (2010)

. Behrens, T., Dastani, M., Dix, J., Koster, M., Novék, P. (eds.): Special Issue about Multi-

Agent-Contest I, Annals of Mathematics and Artificial Intelligence, vol. 59. Springer,
Netherlands (2010)

. Behrens, T., Dastani, M., Dix, J., Novdk, P.: Agent contest competition: 4th edition.

In: K.V. Hindriks, A. Pokahr, S. Sardifia (eds.) Programming Multi-Agent Systems, 6th
International Workshop (ProMAS 2008), Lecture Notes in Computer Science, vol. 5442,
pp. 211-222. Springer (2009)

. Behrens, T., Koster, M., Schlesinger, F., Dix, J., Hiibner, J.: The Multi-agent Programming

Contest 2011: A résumé. In: L. Dennis, O. Boissier, R. Bordini (eds.) Programming Multi-
Agent Systems, Lecture Notes in Computer Science, vol. 7217, pp. 155-172. Springer
Berlin / Heidelberg (2012)

. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming multi-agent systems in

AgentSpeak using Jason, vol. 8. John Wiley & Sons (2007)

Dastani, M., Dix, J., Novédk, P.: The second contest on multi-agent systems based on
computational logic. In: K. Inoue, K. Satoh, F. Toni (eds.) Computational Logic in Multi-
Agent Systems, Lecture Notes in Computer Science, vol. 4371, pp. 266-283. Springer
Berlin Heidelberg (2007). DOI 10.1007/978-3-540-69619-3_15. URL http://dx.doi.org/
10.1007/978-3-540-69619-3_15

Dastani, M., Dix, J., Novdk, P.: Agent contest competition - 3rd edition. In: M. Das-
tani, A. Ricci, A. El Fallah Seghrouchni, M. Winikoff (eds.) Proceedings of ProMAS
’07, Revised Selected and Invited Papers, no. 4908 in Lecture Notes in Artificial Intelli-
gence. Springer, Honululu, US (2008). URL http://www.aronde.net/uploads/tx_pubdb/
AgentContest-2007.pdf

Hiibner, J.F., Sichman, J.S., Boissier, O.: S-moise+: a middleware for developing organised
multi-agent systems. In: Proceedings of the 2005 international conference on Agents,
Norms and Institutions for Regulated Multi-Agent Systems, pp. 64—77. Springer-Verlag
(2005)

Karakovskiy, S., Togelius, J.: The Mario AI benchmark and competitions. IEEE Transac-
tions on Computational Intelligence and Al in Games 4(1), 55-67 (2012)

Koster, M., Schlesinger, F., Dix, J.: The Multi-Agent Programming Contest 2012. In:
Programming Multi-Agent Systems, Lecture Notes in Computer Science, vol. 7837, pp.
174-195. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-38700-5_.11. URL
http://dx.doi.org/10.1007/978-3-642-38700-5_11

18

Tobias Ahlbrecht et al.

15.

16.

Parikh, N., Marathe, M., Swarup, S.: Summarizing simulation results using causally-
relevant states. In: International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 88-103. Springer (2016)

Szabo, C., Teo, Y.M., Chengleput, G.K.: Understanding complex systems: Using interac-
tion as a measure of emergence. In: Proceedings of the 2014 Winter Simulation Conference,
pp. 207-218. IEEE Press (2014)

